Skip Nav Destination
Close Modal
Search Results for
straight-side presses
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 576
Search Results for straight-side presses
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Book Chapter
Presses and Auxiliary Equipment for Forming of Sheet Metal
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005112
EISBN: 978-1-62708-186-3
..., into two main groups: gap-frame presses and straight-side presses. The article describes the various components of mechanical presses and hydraulic presses. It discusses important factors, such as the size, force, energy, and speed requirements, that influence the selection of a press. The article...
Abstract
This article describes the various types of press construction and the factors that influence the selection of mechanically or hydraulically powered machines for producing parts from sheet metal. Presses are broadly classified, according to the type of frame used in their construction, into two main groups: gap-frame presses and straight-side presses. The article describes the various components of mechanical presses and hydraulic presses. It discusses important factors, such as the size, force, energy, and speed requirements, that influence the selection of a press. The article describes the roles of automatic handling equipment that can be categorized as feeding equipment, unloading equipment, and transfer equipment. It concludes with information on the common types of high-production presses, such as dieing machines, multiple-slide machines, transfer presses, fine blanking presses, and flexible-die forming presses.
Image
Principal components of a single-action straight-side mechanical press. The...
Available to PurchasePublished: 01 January 2006
Fig. 5 Principal components of a single-action straight-side mechanical press. The press shown has a large bed, four-point suspension, and an eccentric drive with counterbalance cylinders. Slide adjustment is motorized.
More
Book Chapter
Trimming Operations
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005118
EISBN: 978-1-62708-186-3
... and heel blocks should be provided in the die itself. Straight-Side Presses Deflection is more easily controlled in a straight-side press, where gibs at all four corners of the press are frequently used. The gibs tend to neutralize any side thrusts caused by uneven cutting pressures. Presses...
Abstract
Trimming is the removal of excess metal from a stamped part to allow the part to reach the finished stage or to prepare it for subsequent operations. This article presents an analysis of parts to be trimmed and describes the selection criteria for the different types of trimming dies such as conventional trimming dies and cam trimming dies. It provides information on rough and finish trimming and construction details of trimming dies. The article reviews the selection criteria of presses for a trimming operation. It provides a discussion on the scrap and material handling processes in trimming.
Book Chapter
Press Brakes
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005113
EISBN: 978-1-62708-186-3
... and the structure of the frame. A large press brake should be widened no more than 915 mm (36 in.) ( Ref 1 ). If work consists of punching and using progressive dies on wide stock in heavier tonnages, then a straight side press with four-point gibbing should be considered instead of a press brake. The straight-side...
Abstract
Press brakes are a common and versatile type of equipment for bending metal by delivering an accurate vertical force in a confined longitudinal area. This article begins with a discussion on the design, widening methods, and types of materials used in press brakes. It focuses on the two basic drive systems used in operating press brakes, namely, mechanical and hydraulic drive systems. The article also provides an outline on the tooling associated with press-brakes.
Book Chapter
Straightening of Bars, Shapes, and Long Parts
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
... will warp as martensite continues to form. Straightening should be done below 480 °C (900 °F). Cold bars or chills contacting the high side will more rapidly extract the heat from the workpiece and aid in straightening. Straightening in Presses Round bars up to 50 mm (2 in.) in diameter and from 0.6...
Abstract
Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press roll straightening, moving-insert straightening, parallel-rail straightening, and epicyclic straightening. The article concludes with a discussion on straightening in bar production.
Image
Forming operations in a four-slide machine. (a) Power-press tools pierce tw...
Available to PurchasePublished: 01 January 2006
Fig. 2 Forming operations in a four-slide machine. (a) Power-press tools pierce two holes into strip material at first station. (b) Tools at next press station notch strip on both edges. (c) Notched-and-pierced strip is fed in from press area. As strip motion stops, stock clamp descends so
More
Book Chapter
Progressive Dies
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005160
EISBN: 978-1-62708-186-3
... of the press under load. Because of pressure limitations, gap-frame presses are usually used on the smaller types of progressively shaped parts. Four-Column Presses For progressive work demanding high pressure and exceptional accuracy, straight-side four-column presses are frequently used. This type...
Abstract
This article discusses different factors for selecting progressive dies: costs, production volume, and press availability. It describes the purposes of strip development for a ring shaped part and presents the principles for the development of progressive dies. The article provides discussions on the general design features of progressive dies and the choice of proper auxiliary equipment such as coil feeders and scrap handling equipment. It concludes with information on different presses for progressive die work: open-back inclinable presses, four-column presses, and automatic underdrive presses.
Book Chapter
Forging Design Involving Draft
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004034
EISBN: 978-1-62708-185-6
..., or the draft angle, is designated in degrees (as are draft-angle tolerances) and is measured from the axis of the hammer or press stroke. Draft angles, with few exceptions, are designed with straight sides; this simplifies both designing and diesinking. Typical draft-angle tolerances are ± 1 2...
Abstract
This article schematically illustrates the basic types of drafts used in forging design, including outside draft, inside draft, blend draft, natural draft, shift draft, and back draft. The amount of draft, or the draft angle, is designated in degrees and is measured from the axis of a hammer or press stroke. The article illustrates the measurement of draft angle by describing the designs of forgings produced in equipment with vertical and horizontal rams. The use of excessive amounts of draft usually results in an increase in overall cost. The article describes various alternatives for reducing or eliminating draft. It provides a checklist citing major items that should be coordinated with a designer's review of draft.
Book Chapter
Multiple-Slide Machines and Tooling
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005180
EISBN: 978-1-62708-186-3
... to all four shafts. The slides of the press are connected to cams mounted on the shafts. Split-type cams are often used for this purpose to facilitate conversion to various jobs. Through this shafting arrangement, slides can be introduced to the die area from all four sides of the press. In addition...
Abstract
The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages of multiple-slide machines. It presents comparisons of four-slide operations with press operations based on production speed, tooling cost, tool adjustments, and operating cost. The article reviews some factors to be considered while selecting multiple-slide machines. It summarizes the strip materials commonly used in four-slide production. The article examines the design factors of four-slide parts, including tolerances and finishes. It provides the design recommendations for optimal part quality at maximum production speed. The article also discusses various four-slide cutoff methods.
Book Chapter
Forming of Bars, Tube, and Wire
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
... processes for bars and structural shapes ( Fig. 14 c-h). For close tolerances, rotary and roll straightening may be followed by press straightening. In one roll-straightening system, square, flat, hexagonal, and other flat-sided bars are passed continuously between sets of parallel-axis rolls ( Fig. 15...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
... systems, uniform compaction must be made from top and bottom to avoid sinter distortion by controlling the location of the neutral density plane. Rods are also produced in straight-walled dies with curved upper and lower punches by pressing with the length perpendicular to the pressing axis ( Fig 5...
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Book Chapter
Forming of Sheet, Strip, and Plate
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... of press Type of frame Position of frame Action Method of actuation Type of drive Suspension Ram Bed Open-back Gap Straight-side Arch Piller Solid Tie Rod Vertical Horizontal Inclinable Inclined Single Double Triple Crank Front-to-back crank Eccentric Toggle Screw Cam Rack...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Image
Aluminum alloy modified precision forging for partial frame, shown in plan,...
Available to PurchasePublished: 01 January 2005
Fig. 13 Aluminum alloy modified precision forging for partial frame, shown in plan, side, and end views. See Example 7 . Dimensions in figure given in inches Item Modified precision forging Material Aluminum alloy 2014 (a) Forging equipment 13.5 MN (1500 tonf) press Heat
More
Book Chapter
Piercing of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005109
EISBN: 978-1-62708-186-3
...-bed or horn presses are used for piercing holes in tubing and in the sides of drawn or formed shells and boxes. Adjustable-bed and gap-frame presses are generally rated at capacities of less than 1.8 MN (200 tonf). Straight-side presses are commonly used for compound-die and progressive-die...
Abstract
This article illustrates the characteristics of pierced holes and summarizes the hole wall quality. Specific guidance in selecting die clearances is provided by considering the types of edges produced with different clearances. The article discusses the effect of tool dulling and the use of small and large clearance. It informs that the force needed to pierce a given material depends on the shear strength of the work metal, the peripheral size of the hole or holes to be pierced, stock thickness, and depth of shear on the punch. The article discusses the presses and tools used in piercing. It illustrates the use of compound dies, progressive dies, and transfer dies; piercing of thick and thin stock and piercing holes at an angle to the surface; special piercing techniques; and shaving of low-carbon steels.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005121
EISBN: 978-1-62708-186-3
... with a die cushion are often preferred for deep drawing because of their constant drawing speed, stroke adjustment, and uniformity of clamping pressure. Regardless of the source of power for the slides, double-action straight-side presses with die cushions are best for deep drawing. Straight-side presses...
Abstract
This article illustrates the mechanics of the deep drawing of a cylindrical cup. It discusses the fundamentals of drawing and drawability. Sheet metal is drawn in either hydraulic or mechanical presses. The article summarizes the defects in drawing and factors considered in press selection for drawing. It explains the types of dies used for drawing sheet metal and the effects of process variables and material variables on deep drawing. The process variables that affect the success or failure of a deep-drawing operation include the punch and die radii, punch-to-die clearance, press speed, lubrication, and type of restraint of metal flow used. The article describes the process of redrawing and ironing of metals. Drawing of workpieces with flanges and drawing of hemispheres are also illustrated. The article also provides information on the reducing of drawn shells, methods for expanding portions of drawn workpieces, trimming, and deep drawing using fluid-forming presses.
Image
Side and end views of solid (a), and pierced and reverse extruded (b), conv...
Available to PurchasePublished: 01 January 2005
Fig. 20 Side and end views of solid (a), and pierced and reverse extruded (b), conventional landing gear cylinder forgings. Test-coupon locations for the pierced and extruded forging are shown. See Table 3 for properties. See also Example 14. Dimensions in figure given in inches Item
More
Book Chapter
Straightening of Tubing
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005137
EISBN: 978-1-62708-186-3
...), requires only one or two rotary straightening passes. For larger-diameter tubing (38 mm, or 1 1 2 in., in outside diameter and larger), or when straightness better than standard is required, additional work can be done in a press straightener to remove short end hooks or to secure precision...
Abstract
Tubing of any cross-sectional shape can be straightened by using various equipment and techniques. This article provides a discussion on principal factors that influence the procedures and tooling of tube straightening. It describes the tooling and application of different types of tube straightening techniques, namely, press straightening, parallel-roll straightening, two-roll rotary straightening, multiple-roll rotary straightening, and ovalizing in rotary straighteners.
Book Chapter
Forging Design Involving Parting Line and Grain Flow
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004037
EISBN: 978-1-62708-185-6
...). Both designs are producible in a 13,345 kN (1500 tonf) press, to conventional tolerances. The solid forged design shown in Fig. 3(a) has a straight horizontal parting line, and the outside walls of the cylinder have end grain runout after trimming, which reduces the short-transverse strength...
Abstract
Control of grain flow is one of the major advantages of shaping metal parts by rolling, forging, or extrusion. This article shows the effects of anisotropy on mechanical properties. Cylindrical forgings commonly have a straight parting line located in a diametral plane. The alternate classes of parting lines are called either "straight" or "broken" for brevity. Regardless of whether draft is applied or natural, the forging will have its maximum spread or girth at the parting line. Proper placement of the parting line ensures that the principal grain flow direction within the forging will be parallel to the principal direction of service loading. The article reviews the mutual dependence of parting line and forging process. It provides a checklist for the forging designer that suggests a systematic approach for establishing parting line location. Finally, the article contains examples, with illustrations of parting line locations, accompanied by tables of design parameters.
1