Skip Nav Destination
Close Modal
Search Results for
stock thickness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 755
Search Results for stock thickness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Penetration as a percentage of stock thickness, showing variation with mate...
Available to PurchasePublished: 01 January 2006
Fig. 5 Penetration as a percentage of stock thickness, showing variation with material hardness
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Book Chapter
Piercing of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005109
EISBN: 978-1-62708-186-3
... and the use of small and large clearance. It informs that the force needed to pierce a given material depends on the shear strength of the work metal, the peripheral size of the hole or holes to be pierced, stock thickness, and depth of shear on the punch. The article discusses the presses and tools used...
Abstract
This article illustrates the characteristics of pierced holes and summarizes the hole wall quality. Specific guidance in selecting die clearances is provided by considering the types of edges produced with different clearances. The article discusses the effect of tool dulling and the use of small and large clearance. It informs that the force needed to pierce a given material depends on the shear strength of the work metal, the peripheral size of the hole or holes to be pierced, stock thickness, and depth of shear on the punch. The article discusses the presses and tools used in piercing. It illustrates the use of compound dies, progressive dies, and transfer dies; piercing of thick and thin stock and piercing holes at an angle to the surface; special piercing techniques; and shaving of low-carbon steels.
Book Chapter
Blanking and Piercing of Electrical Steel Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... Abstract This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Image
Ranges of punch-to-die clearance per side recommended by one manufacturer f...
Available to PurchasePublished: 01 January 2006
Fig. 3 Ranges of punch-to-die clearance per side recommended by one manufacturer for piercing and blanking of various metals up to 3.18 mm (0.125 in.) thick Group Clearance per side, % of stock thickness (a) Average Range 1. Aluminum alloys 1100 and 5052, all tempers 2.25
More
Image
Placement of welds to join three sheets of metal in a T-joint. (a) Configur...
Available to Purchase
in Procedure Development and Practice Considerations for Resistance Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 3 Placement of welds to join three sheets of metal in a T-joint. (a) Configuration that can be used to join three stock thicknesses. (b) Recommended configuration incorporating scalloped edges to permit alternate welding of spots in two thicknesses only
More
Book Chapter
Blanking and Piercing
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005117
EISBN: 978-1-62708-186-3
... in.) in diameter when the stock thickness is 3 mm (0.12 in.) or less. For stock that is thicker than 3 mm (0.12 in.), and for holes 25 to 38 mm (1 to 1 1 2 in.) in diameter, a shoulder-type punch is used. The heavier construction of this type of punch provides the added strength necessary to ensure...
Abstract
This article begins with a discussion on the fundamentals of cutting. It focuses on blanking and piercing operations in a press tool to form and shape the final part geometry. The types of piercing operations include conventional piercing, piercing with a pointed punch, piece-and-extrude operations, slotting, countersinking, and cutting and lancing of tabs. The article provides information on the punch assembly, the die assembly, and the stripper and discusses the factors considered during piercing operations. It reviews the applications of the four types of blanks used in sheet-forming operations, namely, rectangular blank, rough blank, partially developed blank, and fully developed blank. It concludes with a discussion on the process capabilities, applications, and limitations of fine-edge blanking and piercing.
Image
Convex shear and concave shear on blanking dies. Angle and depth of shear a...
Available to PurchasePublished: 01 January 2006
Fig. 11 Convex shear and concave shear on blanking dies. Angle and depth of shear are exaggerated for emphasis. Normally, depth of shear does not greatly exceed stock thickness.
More
Image
Beads and ribs. (a) Cross section of a bead or rib formed in sheet metal fo...
Available to PurchasePublished: 01 January 2006
Fig. 14 Beads and ribs. (a) Cross section of a bead or rib formed in sheet metal for strengthening. (b) Concentric ribs formed around a hole to strengthen and stiffen the part. R , radius; T , stock thickness. Source: Ref 1
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005101
EISBN: 978-1-62708-186-3
...; T , stock thickness. Source: Ref 1 Beads and ribs are formed by stretching metal to fill grooves in the die. A rubber pad or a metal punch is used for this operation. Because the metal is stretched, deep narrow ribs may exceed the formability limit of the sheet. In addition, in rubber pad...
Abstract
Sheet-forming processes provide considerable geometric and material flexibility in meeting these requirements, and design of parts for sheet forming must take into account these benefits as well as the limitations of the processes. This article reviews the basic forming operations and their general geometric features. These operations include hole making, flanging, bead and rib forming, and stretching and drawing for shallow or deep recesses. The article illustrates the general approach to design for sheet forming and the considerations that must be made for material savings and manufacturing ease, in addition to part function. It concludes with information on reducing the amount of scrap in sheet-forming operations.
Book Chapter
Multiple-Slide Machines and Tooling
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005180
EISBN: 978-1-62708-186-3
..., these machines are applied to the production of relatively small stampings. The largest machines are capable of handling stock up to a maximum of 75 mm (3 in.) in width. The longest feed length possible is 320 mm (12 1 2 in.). Stock thicknesses up to 2.5 mm ( 3 32 in.) can be handled...
Abstract
The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages of multiple-slide machines. It presents comparisons of four-slide operations with press operations based on production speed, tooling cost, tool adjustments, and operating cost. The article reviews some factors to be considered while selecting multiple-slide machines. It summarizes the strip materials commonly used in four-slide production. The article examines the design factors of four-slide parts, including tolerances and finishes. It provides the design recommendations for optimal part quality at maximum production speed. The article also discusses various four-slide cutoff methods.
Book Chapter
Blanking of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
... blanking conventional dies cutting deburring die clearance low-carbon steel presses shaving short-run dies welded blanks work metal thickness BLANKING is the process that uses a die and press to cut or shear a piece of metal from flat or preformed stock. The resulting blank is a piece...
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Book Chapter
Bending of Bars and Bar Sections
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005134
EISBN: 978-1-62708-186-3
... and wiper shoe require a good finish (usually ground) because the work metal must slide along them. When air bending bars in a press brake, simple V-blocks will suffice for the female dies. The opening of the V-blocks should be eight times stock thickness for standard sections, and ten times stock...
Abstract
This article describes various bending methods: draw bending, compression bending, roll bending, stretch bending, and ram-and-press bending. It discusses the machines used for the bending of bars. These machines include devices and fixtures for manual bending, press brakes, conventional mechanical and hydraulic presses, horizontal bending machines, rotary benders, and bending presses. The article illustrates the tools used in bending and other bending process. It also tabulates the lubricants required for bending specific metals.
Book Chapter
Contour Roll Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005126
EISBN: 978-1-62708-186-3
... by working the stock progressively in two or more stations until the finished shape is produced. Only bending takes place in contour roll forming; the stock thickness is unchanged except for a slight thinning at bend radii. The process is particularly suited to the production of large quantities and long...
Abstract
Contour roll forming is a continuous process for forming metal from sheet, strip, or coiled stock into desired shapes of uniform cross section by feeding the stock through a series of roll stations equipped with contoured rolls. This article discusses the materials, roll-forming machines, tooling, and auxiliary equipment used in contour roll forming and its process variables. Tooling used in roll forming includes forming rolls and dies for punching and cutting off the material. The article discusses the additional tooling required in tube mills to weld, size, and straighten the tubes as they are produced on the machine. It describes the roll design for tube rolling and reviews the seam welding operations of pipe and tubing. The article discusses cross-sectional tolerances, the reshaping of round tubing, and factors that affect the quality, accuracy, and surface finish.
Image
Effect of punch-to-die clearance per side (as a percentage of stock thickne...
Available to PurchasePublished: 01 January 2006
Fig. 1 Effect of punch-to-die clearance per side (as a percentage of stock thickness, t ) on characteristics of edges of holes and slugs (or blanks) produced by piercing or blanking low-carbon steel sheet or strip at a maximum hardness of 75 HRB. Table 1 lists clearances for producing
More
Image
Effect of punch-to-die clearance per side (as a percentage of stock thickne...
Available to PurchasePublished: 01 January 2006
Fig. 2 Effect of punch-to-die clearance per side (as a percentage of stock thickness, t ) on characteristics of edges of holes and slugs (or blanks) produced by piercing or blanking low-carbon steel sheet or strip at a maximum hardness of 75 HRB. Table 1 lists clearances for producing
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005139
EISBN: 978-1-62708-186-3
... Clearance between punch and die should be approximately the same as that for the blanking and piercing of cold-rolled low-carbon steel. Some manufacturers use less than 0.03 mm (0.001 in.) per side; others specify 5 to 10% of stock thickness per side for sheet and 10 to 15% of stock thickness for plates...
Abstract
This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely, press-brake forming, press forming, multiple-slide forming, deep drawing, spinning, rubber-pad forming, drop hammer forming¸ three-roll forming, contour roll forming, stretch forming, and bending of tubing.
1