Skip Nav Destination
Close Modal
Search Results for
steel structures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2647 Search Results for
steel structures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006062
EISBN: 978-1-62708-172-6
... Abstract Maintenance coating is an important part of any meaningful asset-preservation strategy in facilities producing pulp and paper and other chemicals. This article discusses maintenance coating for carbon steel structures and process equipment exposed to normal external pulp and paper mill...
Abstract
Maintenance coating is an important part of any meaningful asset-preservation strategy in facilities producing pulp and paper and other chemicals. This article discusses maintenance coating for carbon steel structures and process equipment exposed to normal external pulp and paper mill atmospheric conditions. The important requirements and standards for surface preparation are emphasized and common issues encountered in maintenance coating projects are described.
Image
Published: 01 January 1996
Image
Published: 01 January 2005
Image
Published: 01 January 1996
Fig. 1 Fatigue strength of carbon steel structural joints. Source: Structural Steel Design, Ronald Press, 1974, p 519–551
More
Image
Published: 01 January 2005
Image
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 7 Effect of welding on the life of a carbon steel structure. (a) and (b) 46 cm (18 in.) long crack found in a carbon steel as-forged nozzle that was arc gouged. Failure occurred after five years in service during cold start-up procedure. (c) Micrograph showing a hardened layer
More
Image
Published: 01 December 2004
Fig. 9 Armco iron friction welded to carbon steel. Structure is ferrite (smaller grains) and pearlite plus ferrite (large grains). Color etched with Klemm's I reagent. 200×. (G. Müller)
More
Image
Published: 01 January 2006
Fig. 9 Heavy buildup of corrosion scale on weathering steel structural members in conditions of poor air circulation, high humidity, and no wetting/drying
More
Image
Published: 01 January 2006
Fig. 10 Corrosion scale buildup on weathering steel structural members, which were in a sheltered area on a building exterior where wetting and drying did not occur
More
Image
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 7 Effect of welding on the life of a carbon steel structure. (a) and (b) show the 46 cm (18 in.) long crack found in a carbon steel as-forged nozzle that was arc gouged. Failure occurred after five years in service during a cold start-up procedure. (c) Micrograph showing a hardened layer
More
Image
Published: 01 January 1989
Fig. 13 High-speed steel tools used for machining nonmetallic honeycomb structures. Left, circular milling cutter chip shredder to break up chips used for finish machining. Right, chip chaser type with notched bottom used for rough machining. Courtesy of Lockheed Aeronautical Systems Company
More
Image
Published: 01 January 1996
Fig. 6 Transmission electron microscopy structures of 4140 steel tempered at 400 °C (750 °F) before (a) and after (b) cycling at Δε/2 = 2.5%. There has been a large reduction in dislocation density. Source: Ref 15
More
Image
in Additive Manufacturing of Stainless Steel Biomedical Devices
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 4 Different types of lattice structures printed in 316L stainless steel; (a) tetrakaidecahedron, (b) diamond, (c) body-centered cubic. Source: Ref 33
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001014
EISBN: 978-1-62708-161-0
... in at least one cross-sectional dimension, and are used in structures such as bridges, buildings, ships, and railroad cars. Special shapes are those designed by users for specific applications. Dimensions and Tolerances The nominal dimensions of hot-rolled steel bars and shapes are designated in inches...
Abstract
Hot-rolled steel bars and other hot-rolled steel shapes are produced from ingots, blooms, or billets converted from ingots or from strand cast blooms or billets and comprise a variety of sizes and cross sections. Most carbon steel and alloy steel hot-rolled bars and shapes contain surface imperfections with varying degrees of severity. Seams, laps, and slivers are probably the most common defects in hot-rolled bars and shapes. Another condition that could be considered a surface defect is decarburization. Hot-rolled steel bars and shapes can be produced to chemical composition ranges or limits, mechanical property requirements, or both. Hot-rolled carbon steel bars are produced to two primary quality levels: merchant quality and special quality. Merchant quality is the least restrictive descriptor for hot-rolled carbon steel bars. Special quality bars are employed when end use, method of fabrication, or subsequent processing treatment requires characteristics not available in merchant quality bars.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
... Abstract Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes...
Abstract
Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes discussions on fatigue crack growth and fracture toughness. It presents the fracture toughness requirements specified by different design codes, summarizes the specifications for offshore structural steels provided by international standards organizations, and discusses the applications of these specifications. The article also focuses on advances made in steel technology and the impact of these advances on the fracture toughness of steel.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002395
EISBN: 978-1-62708-193-1
... Abstract This article provides information on fracture toughness and fatigue crack growth of structural steels. It describes fatigue life behavior in terms of unnotched fatigue limits, notch effects, axial strain-life fatigue, and mean stress effects. The article analyzes the mechanisms...
Abstract
This article provides information on fracture toughness and fatigue crack growth of structural steels. It describes fatigue life behavior in terms of unnotched fatigue limits, notch effects, axial strain-life fatigue, and mean stress effects. The article analyzes the mechanisms of corrosion fatigue crack initiation and prevention of corrosion fatigue. It presents case histories of fatigue failure of various steel components. The article reviews the failure of coiled tubing in a drilling application and the failure of coiled tubing due to hydrogen sulfide exposure, with examples.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
... Abstract The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before...
Abstract
The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before and during solidification is also discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure, for example, hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure. It lists the mechanical properties of selected steels in various heat-treated or cold-worked conditions. In steels and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003809
EISBN: 978-1-62708-183-2
... Abstract This article describes the paint systems generally used to protect steel structures, steel sheet, and bridges from corrosion, and how they deter corrosion. It provides a discussion on the basic design criteria of steel structures for corrosion protection. The article also explains...
Abstract
This article describes the paint systems generally used to protect steel structures, steel sheet, and bridges from corrosion, and how they deter corrosion. It provides a discussion on the basic design criteria of steel structures for corrosion protection. The article also explains the differences between prepaint and postpaint, and the steps involved in prepaint processing of steel. It presents the selection guideline for paint system evaluation. The advantages of corrosion protection are also discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... Abstract This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
1