1-20 of 3668 Search Results for

steel selection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009237
EISBN: 978-1-62708-161-0
... Abstract Hardenability is an expression of the propensity of steel to harden when quenched at the austenitizing temperature. It is defined in terms of the depth and distribution of alloying elements present in the steel. This article describes the selection process for steel with an emphasis...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005981
EISBN: 978-1-62708-168-9
... Abstract This article provides useful information on the selection of steels for heat treatment in order to achieve the required hardness. It discusses the effects of alloying elements on hardenability using the Grossmann's concept, and presents a discussion on the effects of alloying elements...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005941
EISBN: 978-1-62708-168-9
... steels. It provides useful information on selection of steels for heat treatment, and discusses the causes of residual stresses, distortion (size and shape), and size changes due to hardening and tempering. The article elucidates the control techniques for such distortions. It describes the importance...
Image
Published: 01 December 2008
Fig. 6 Cast steel selection guide referencing ASTM International standards. Circle is segmented by primary application feature. Rings of greater diameter are more highly alloyed. Consult the standard for specific grades and classes of materials. More
Image
Published: 01 August 2013
Fig. 40 Curves for steel selection based on hardness. (a) Minimum as-quenched hardness to produce various final hardnesses after tempering. (b) Dependence of as-quenched hardness on percentages of martensite and carbon More
Image
Published: 01 August 2013
Fig. 51 Illustration of the use of hardenability data in steel selection. See text More
Image
Published: 01 January 1990
Fig. 15 Curves for steel selection based on hardness. (a) Minimum as-quenched hardness to produce various final hardnesses after tempering. (b) Dependence of as-quenched hardness on percentages of martensite and carbon More
Image
Published: 01 January 1990
Fig. 24 Illustration of the use of hardenability data in steel selection More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... Abstract This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design...
Image
Published: 01 November 2010
Fig. 2 Selection of the variety of steel and cast iron components that can be induction hardened. Courtesy of Inductoheat, Inc. More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003115
EISBN: 978-1-62708-199-3
... in the selection of stainless steel, namely corrosion resistance, fabrication characteristics, product forms, thermally induced embrittlement, mechanical properties in specific temperature ranges, and product cost. austenitic stainless steel chemical composition corrosion resistance duplex stainless steel...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... Abstract This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005951
EISBN: 978-1-62708-168-9
... Abstract Case hardening involves various methods and each method has unique characteristics and different considerations in the selection of steels  This article reviews the various grades of carburizing steels, carbonitriding steels, nitriding steels, and steels for induction, or flame...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001093
EISBN: 978-1-62708-162-7
... Abstract Magnetically soft materials are characterized by their low coercivity, an essential requirement for irons and steels selected for any application involving electromagnetic induction cycling. This article provides information on ferromagnetic material properties and how...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the forging behavior and practices of carbon and alloy steels. It presents general guidelines for forging in terms of practices, steel selection, forgeability and mechanical properties, heat treatments of steel forgings, die design features, and machining...
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007010
EISBN: 978-1-62708-450-5
... processing using high-velocity water flow IQ units. This article presents a detailed description of IQ technology, related equipment, and IQ applications. A review of intensive quench system design and processing is provided, including numerical design criteria, steel selection, quenchants, properties...
Image
Published: 01 December 2008
Fig. 2 Stress-strain curves for selected steels showing influence of carbon content. Source: Ref 2 More
Image
Published: 01 January 2006
Fig. 3 Guidelines for selection of stainless steels and nickel alloys for flue gas desulfurization equipment at 50 to 65 °C (122 to 149 °F). Source: Ref 3 More
Image
Published: 30 September 2014
Fig. 3 Specific heat versus temperature for selected steels. Source: Ref 4 More
Image
Published: 01 January 1994
Fig. 1 Comparison of sag resistance of selected enameling steels. A, low-carbon enameling steels; B, decarburized steels; C, interstitial-free steels More