Skip Nav Destination
Close Modal
Search Results for
static strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 918
Search Results for static strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2000
Image
Published: 01 January 1996
Fig. 9 Fatigue and static strengths normalized with respect to unidirectional tensile strengths
More
Image
Published: 01 January 2000
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002468
EISBN: 978-1-62708-194-8
... the estimation of probability of failure with an example. It reviews the designing and selection of materials for static strength and stiffness. The article also describes the causes of failure of engineering components, including design deficiencies, poor selection of materials, and manufacturing defects...
Abstract
This article provides a schematic illustration of factors that should be considered in component design. It discusses the effect of component geometry on the behavior of materials and groups the main parameters that affect the value of the factor of safety. The article illustrates the estimation of probability of failure with an example. It reviews the designing and selection of materials for static strength and stiffness. The article also describes the causes of failure of engineering components, including design deficiencies, poor selection of materials, and manufacturing defects.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003264
EISBN: 978-1-62708-176-4
... with the static-strength requirements of design. This article describes the stress-strain behavior during a tension test and provides the definition of terms such as stress, force, strain, and elongation. It explains the tensile properties obtained from the test results: the tensile strength and yield strength...
Abstract
THE TENSION TEST is one of the most commonly used tests for evaluating materials. The material characteristics obtained from tension tests are used for quality control in production, for ranking performance of structural materials, for evaluation of alloys, and for dealing with the static-strength requirements of design. This article describes the stress-strain behavior during a tension test and provides the definition of terms such as stress, force, strain, and elongation. It explains the tensile properties obtained from the test results: the tensile strength and yield strength, which includes offset yield strength, extension-under-load yield strength, and upper yield strength. The article concludes with a description of the general procedures for conducting the tension test based on ASTM standards and the variability of tensile properties.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006990
EISBN: 978-1-62708-439-0
... Abstract Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily...
Abstract
Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM materials.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006615
EISBN: 978-1-62708-210-5
... of static strength; 2524 has similar static strength to 2024. Static properties of Alclad 2524-T3 sheet/ thin plate (minimum values, S- or A-basis) Table 2 Static properties of Alclad 2524-T3 sheet/ thin plate (minimum values, S- or A-basis) Property Direction Alclad 2524-T3 (AMS 4296) Alclad...
Abstract
This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of alloy 2524. A comparison of strength minimums and typical damage tolerance properties for Alclad 2524-T3 with Alclad 2024-T3 plate is also provided.
Image
Published: 01 January 2001
. Otherwise, static strength will be reduced by a factor of 2. Multiple rows of bolts in uniformly thick members increase strength by only a few percent. Further strain limits for damage tolerance and impact resistance are not yet established.
More
Image
Published: 01 January 1996
Fig. 25 S-N curve for the as-fabricated and the super-plastic forming/diffusion bonding (SPF/DB) specimens. The static strength ( N = 0) is 25% higher for the as-fabricated specimen.
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
.... Such a failure can occur at a small fraction of the static strength of a material. In this sense, fatigue in composite materials is observed through accumulation of damage that initiates and progresses during cyclic loading and exposure to environment. The cyclic loading causes damage, reducing the strength...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009219
EISBN: 978-1-62708-176-4
... is discussed. The techniques for defining a mean fatigue curve and evaluating scatter or variability about that mean are explained. The article presents the standard techniques for statistical characterization of the fatigue strength or fatigue limit of a single material by use of the Probit method, the up...
Abstract
This article reviews the planning of fatigue experiments, including the structure of a test plan, randomization, and nuisance variables. The statistical characterization of the S/N (stress/life) or e/N (strain/life) response of a single material tested under a single condition is discussed. The techniques for defining a mean fatigue curve and evaluating scatter or variability about that mean are explained. The article presents the standard techniques for statistical characterization of the fatigue strength or fatigue limit of a single material by use of the Probit method, the up-and-down (staircase) method, and two-point procedures. Stress-level selection methods are also presented. The article discusses the comparison of the fatigue behavior of two or more materials for data generated at a single stress or strain level. Treatments to compare data generated over a range of stress or strain levels are included. The article also summarizes the consolidation of fatigue data generated at different conditions.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002415
EISBN: 978-1-62708-193-1
... on polymer composites is contained in Ref 3 . Fatigue Failure Composite materials exhibit very complex failure mechanisms under static and fatigue loading because of the anisotropic characteristics of their strength and stiffness. Fatigue failure is usually accompanied by extensive damage...
Abstract
Knowledge of fatigue behavior at the laminate level is essential for understanding the fatigue life of a laminated composite structure. This article describes fatigue failure of composite laminates in terms of layer cracking, delamination, and fiber break and interface debonding. It discusses the fatigue behavior of composite laminates in the form of a relation between applied maximum fatigue stress and fatigue life. The article explains Weibull distribution and parameters estimation for fatigue data analysis and life prediction of composite laminates. It analyzes the fatigue properties and damage tolerance of fiber-metal laminates such as ARALL and GLARE laminates. The article concludes with a discussion on the effects of fatigue on notched and unnotched specimens.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006600
EISBN: 978-1-62708-210-5
... a highly fibered structure, leading to an outstanding strength/toughness balance, while keeping corrosion resistance at the same level as the 2024 reference material. Introduced in 2001, its aim was improved static strength and toughness compared with alloy 2024A-T351. It has been applied for extrusions...
Abstract
Alloy 2027 is an Al-Cu-Mg-Mn-Zr alloy providing improved mechanical properties compared with those of alloy 2024. Alloy 2027-T3511 extrusions are typically used for stringers to stiffen wing skin panels machined from damage tolerant 2xxx alloy plates. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of plate and extrusions of this 2xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006732
EISBN: 978-1-62708-210-5
... + Mg + Cu) than alloy 7075. It has been used where static strengths are approximately the same as forged 7079-T6 and where high resistance to stress corrosion cracking are required in components such as forged aircraft and missile fittings, landing-gear cylinders, and extruded sections. It does...
Abstract
Alloy 7049 is produced occasionally for forgings and extrusions. This datasheet provides information on key alloy metallurgy and processing effects on physical and mechanical properties of this 7xxx series alloy.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... not appreciably affect static strength. The goal is to preclude fleet maintenance activity by demonstrating by analysis that a crack growth life of two times the expected usage life (an inspection interval of one usage life) exists. Figure 1 illustrates implementation of the damage tolerance process...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006731
EISBN: 978-1-62708-210-5
... recrystallization solution heat treatment Alloy 7040 ( Table 1 ) is a variation of 7050, where Zr additions prevent recrystallization of hot-worked products during solution heat treatment without the quench sensitivity from additions of Cr. Alloy 7040 provides higher static strength and toughness compared...
Abstract
Alloy 7040 is a variation of 7050, where Zr additions prevent recrystallization of hot-worked products during solution heat treatment without the quench sensitivity from additions of Cr. This datasheet provides information on composition limits and fabrication characteristics of aluminum alloys 7040 and 7140 and processing effects on mechanical properties of aluminum alloy 7040-T7651 high-strength plate.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
... Important factors Static strength and stability Full versus partial strength restoration Stability requirements Repair durability Fatigue loading Corrosion Environmental degradation Stiffness requirements Deflection limitations Flutter and other aeroelasticity effects Load path variations...
Abstract
This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article describes ten steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair. It reviews three repair schemes used in repair design analysis, namely, core replacement, adhesively bonded patch, and mechanically fastened patch. The article also emphasizes the various pitfalls and problems in repair design for composite structures.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002368
EISBN: 978-1-62708-193-1
... of carbon steel plates perforated with circular holes ( Ref 5 ). Fig. 1 Fatigue strength of carbon steel structural joints. Source: Structural Steel Design, Ronald Press, 1974, p 519–551 Joint design and loading are probably the most critical factors, static strength of the material may...
Abstract
This article discusses the effect of thread design, preload, tightening, and mean stress on the fatigue strength of bolt steel. It describes the factors influencing fatigue failures in cold-driven and hot-driven riveted joints. The factors affecting the fatigue resistance of bolted friction joints are also discussed. The article reviews stress concentrations in pin joints and discusses stress-intensity factors for mechanically fastened joints.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002419
EISBN: 978-1-62708-193-1
... illustrates the phenomenon of static fatigue and concludes with a discussion on the role of surface damage in strength and fatigue behavior. borosilicate glass dynamic fatigue fatigue behavior fracture behavior lifetime prediction silicate glass slow crack growth soda-lime-silicate glass static...
Abstract
This article discusses the fracture behavior of silicate glasses, more specifically, soda-lime-silicate glass, borosilicate glass and vitreous silica. It analyzes the testing and calculation of dynamic fatigue and slow-crack-growth for lifetime prediction of glasses. The article illustrates the phenomenon of static fatigue and concludes with a discussion on the role of surface damage in strength and fatigue behavior.
1