Skip Nav Destination
Close Modal
Search Results for
static fracture toughness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 476
Search Results for static fracture toughness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 27 Fracture-toughness transition behavior of steel under static and impact loading. The static fracture-toughness transition curve depicts the mode of crack initiation at the crack tip. The dynamic fracture-toughness transition curve depicts the mode of crack propagation.
More
Image
Published: 01 January 2000
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the metallurgy of carbon and alloy steels, followed by discussions on their major mechanical properties, namely, static fracture toughness, dynamic fracture toughness, fatigue or sustained-load crack growth rates, and fatigue or sustained-load thresholds...
Abstract
This article summarizes the metallurgy of carbon and alloy steels, followed by discussions on their major mechanical properties, namely, static fracture toughness, dynamic fracture toughness, fatigue or sustained-load crack growth rates, and fatigue or sustained-load thresholds. It addresses fatigue crack propagation and sustained-load crack propagation, as well as the fundamental aspects of fracture in steels. The article illustrates the effects of variations in the alloy chemistry, microstructure, temperature, strain rate, and environment on various fracture toughness or crack growth rate parameters.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... under impact loading in the presence of a notch. Notch toughness is measured by using a variety of specimens such as the Charpy V-notch impact specimen, the dynamic-tear specimen, and plane-strain fracture-toughness specimens under static loading ( K Ic ) and under impact loading ( K Id ). Ductile...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006615
EISBN: 978-1-62708-210-5
..., which requires high fracture toughness and fatigue-crack growth resistance. The most important improvement of the alloy was the resistance to fatigue crack growth at high stress intensities. Alloy 2524 was selected for use as sheet and light-gauge plate in fuselage skin applications on the Boeing 777...
Abstract
This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of alloy 2524. A comparison of strength minimums and typical damage tolerance properties for Alclad 2524-T3 with Alclad 2024-T3 plate is also provided.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006744
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits for aluminum alloy 7255, with emphasis on the minimum static properties of aluminum alloy 7255 plate and fracture toughness of aluminum alloy 7255-T7751. Fatigue crack growth resistance of alloy 7255 plate is compared with those...
Abstract
This datasheet provides information on composition limits for aluminum alloy 7255, with emphasis on the minimum static properties of aluminum alloy 7255 plate and fracture toughness of aluminum alloy 7255-T7751. Fatigue crack growth resistance of alloy 7255 plate is compared with those of legacy alloy 7055 plate.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006601
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy and applications of Alclad 2029. It contains tables that present statistically determined mechanical property minimums for Alclad 2029-T8 sheet and plate. The plane stress fracture toughness and fatigue crack growth resistance...
Abstract
This datasheet provides information on key alloy metallurgy and applications of Alclad 2029. It contains tables that present statistically determined mechanical property minimums for Alclad 2029-T8 sheet and plate. The plane stress fracture toughness and fatigue crack growth resistance of alloys 2029 and 2024 are illustrated.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006606
EISBN: 978-1-62708-210-5
... modulus, fracture toughness and fatigue crack growth resistance. The composition and thermomechanical processes developed by Arconic for 2099 were especially designed to overcome the deficiencies in earlier Al-Li alloys such as poor corrosion resistance and high anisotropy. Compared with alloys 7075...
Abstract
Alloy 2099 is a third-generation Al-Cu-Li alloy providing an improved combination of strength, elastic modulus, and fatigue crack growth resistance. This datasheet provides information on its key alloy metallurgy and the effects of processing on its mechanical properties.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003302
EISBN: 978-1-62708-176-4
... properties of materials are considerably different from their quasi-static counterparts. For example, metals exhibit an increase in yield strength ( Ref 4 , 5 ), and ceramics exhibit an increase in fracture strength (e.g., Ref 6 , 7 , 8 , 9 ) and fracture toughness ( Ref 10 , 11 ). Similar...
Abstract
This article describes a method for determining the dynamic indentation response of metals and ceramics. This method, based on split Hopkinson pressure bar testing, can determine rate-dependent characteristics of metals and ceramics at moderate strain rates. For example, dynamic indentation testing reveals a significant effect of loading rates on the hardness and the induced plastic zone size in metals and on the hardness and induced crack sizes of brittle materials. The article also explains the rebound and pendulum methods for dynamic hardness testing.
Image
Published: 01 January 2000
Fig. 5 Effect of yield strength on shift in transition temperature between impact and static plane-strain fracture-toughness curves
More
Image
Published: 01 January 1996
Fig. 31 Effect of yield strength on the shift in transition temperature between impact and static plane-strain fracture-toughness curves. Source: Ref 44
More
Image
Published: 01 December 1998
Fig. 54 Effect of yield strength on the shift in transition temperature between impact and static plane-strain fracture-toughness curves. Source: Ref 22
More
Image
Published: 01 January 1996
Fig. 20 Comparison of static ( K Ic ), dynamic ( K Id ), and dynamic-instrumented ( K Idi ) impact fracture toughness of precracked specimens of ASTM A533, grade B, steel, as a function of test temperature. The stress-intensity rate was about 1.098 × 10 4 MPa m · s −1 (10 4 ksi
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
...-strain fracture toughness ( K Ic ), which is the material response characteristic that is often used in designing against fracture. K Ic is a limiting value; that is, it can be used in static fracture mechanics design in much the same way as the yield strength (σ Y ) is used in static stress analysis...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Image
Published: 01 January 2002
Fig. 16 Comparison of static ( K Ic ), dynamic ( K Id ), and dynamic-instrumented ( K idi ) impact fracture toughness of precracked specimens of ASTM A 533 grade B steel, as a function of test temperature. The stress-intensity rate was about 1.098 × 10 4 MPa m · s −1 (10 4 ksi
More
Image
Published: 15 January 2021
Fig. 12 Comparison of static ( K Ic ), dynamic ( K Id ), and dynamic-instrumented ( K idi ) impact fracture toughness of precracked specimens of ASTM A533 grade B steel as a function of test temperature. The stress-intensity rate was approximately 1.098 × 10 4 MPa m · s −1 (10 4
More
Image
Published: 01 January 2000
Fig. 1 Comparison of static ( K Ic ), dynamic ( K Id ), and dynamic-instrumented ( K Idi ) impact fracture toughness of precracked specimens of ASTM A 533 grade B steel, as a function of test temperature. The stress-intensity rate was about 1.098 × 10 4 MPa m · s −1 (10 4 ksi
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006604
EISBN: 978-1-62708-210-5
... static properties, physical properties, fracture toughness, corrosion resistance and S - N fatigue data are available in MMPDS. The strength of 2055-T84 extrusions is similar to that of AA 7150 extrusions and superior to that of older 7 xxx alloys such as 7075 and 7050, while providing higher...
Abstract
Alloy 2055 is an Al-Cu-Li alloy developed as a replacement for high-strength 7xxx and 2xxx alloys in applications such as fuselage stringers and floor beams. This datasheet provides information on its key alloy metallurgy and illustrates the damage tolerance of 2055-T84 extrusions and 7xxx extrusions.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002417
EISBN: 978-1-62708-193-1
.... It is known that the addition of 20 to 30 vol% SiC to the Si 3 N 4 matrix can lead to an increase in fracture toughness by more than a factor of two over that of the unreinforced matrix material. However, when the composite contains stress concentrations, the application of cyclic compressive loads causes...
Abstract
This article summarizes the understanding of the mechanisms and mechanical effects of fatigue processes in highly brittle materials, with particular emphasis on ceramics. It provides a discussion on room-temperature fatigue crack growth in monolithic ceramics, transformation-toughened ceramics, and ceramic composites under cyclic compression. The cyclic damage zones ahead of tensile fatigue cracks, crack propagation under cyclic tension or tension-compression loads, and elevated-temperature fatigue crack growth in monotonic and composite ceramics, are discussed. The article presents ceramic fatigue data for fatigue crack growth testing and concludes with a discussion on life prediction for ceramics or ceramic-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003308
EISBN: 978-1-62708-176-4
...-static strain rates. For example, values for dynamic fracture toughness are lower than those for static toughness ( K Ic ) in the comparison shown in Fig. 1 . Fig. 1 Comparison of static ( K Ic ), dynamic ( K Id ), and dynamic-instrumented ( K Idi ) impact fracture toughness of precracked...
Abstract
Measurement and analysis of fracture behavior under high loading rates is carried out by different test methods. This article provides a discussion on the history and types of notch-toughness tests and focuses exclusively on notch-toughness tests with emphasis on the Charpy impact test. It reviews the requirements of test specimens, test machine, testing procedure and machine verification, application, and determination of fracture appearance and lateral expansion according to ASTM A370, E 23, and A 593 specifications. In addition, the article includes information on the instrumentation, standards and requirements, and limitations of instrumented Charpy impact test, which is carried out in specimens with induced fatigue precrack. The article concludes with a review of the requirements of drop weight testing and the specimens used in other notch-toughness tests.
1