1-20 of 920

Search Results for stainless steel powders

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
... Abstract This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006068
EISBN: 978-1-62708-175-7
... Abstract This article provides information on the process details that differ from general water atomization of metals as they relate to basic and engineering properties that are specific to stainless steel powders. The discussion focuses on the compacting-grade stainless steel powders...
Image
Published: 01 December 1998
Fig. 1 Typical compaction behavior of stainless steel powders. Lubrication 1% lithium stearate More
Image
Published: 15 June 2020
Fig. 4 SEM of four 17-4 PH stainless steel powders; (a) gas-atomized powder D 50 = 13 μm, (b) water-atomized powder D 50 = 17 μm, (c) water-atomized powder D 50 = 24 μm, (d) water-atomized powder D 50 = 43 μm More
Image
Published: 30 September 2015
Fig. 1 Examples of water-atomized stainless steel powder. (a) 409L. (b) 316 of high apparent density (slightly more rounded edges). Both scanning electron microscope images, original magnification: 100× More
Image
Published: 30 September 2015
Fig. 5 Detrimental effects of iron and 410L stainless steel powder contamination on the corrosion resistance of hydrogen-sintered 316L as a function of contamination level and sintering temperature. Reprinted with permission from Metal Powder Industries Federation, Princeton, NJ. Source: Ref More
Image
Published: 30 September 2015
Fig. 3 Water-atomized 316L stainless steel powder particles with a size range of 300 to 600 micrometers that are compacted and sintered to 45% density in order to yield a 40 micron filter grade. 100× More
Image
Published: 30 September 2015
Fig. 4 Water-atomized 316L stainless steel powder particles with a size range of 45 micrometers and less that are compacted and sintered to 75% density in order to yield a 0.5 micron filter grade. 100× More
Image
Published: 01 December 2004
Fig. 17 Type 316, gas-atomized stainless steel powder. Note attached satellites. SEM. 750× More
Image
Published: 01 December 1998
Fig. 22 The apparent density of a lubricated water atomized stainless steel powder as function of mixing time. The plot shows the apparent density versus the amount of lubricant. The conditions were 60 vol% fill in a double cone mixer rotating at 50 RPM, lithium stearate ranging from 0.5 More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006066
EISBN: 978-1-62708-175-7
... Abstract Stainless steels are highly alloyed materials in comparison to most other popular powder metallurgy (PM) materials, such as low-alloy steels, copper alloys, and aluminum alloys. This article provides an overview of the history of PM stainless steels. aluminum alloys copper...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006113
EISBN: 978-1-62708-175-7
... Abstract This article reviews various test methods used for evaluating the corrosion resistance of powder metallurgy stainless steels. These include immersion testing, salt spray testing, and electrochemical testing. The article discusses the factors that affect corrosion resistance of sintered...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006098
EISBN: 978-1-62708-175-7
... Abstract This article describes the physical properties of powder metallurgy (PM) stainless steels. These include thermal diffusivity, conductivity, thermal expansion coefficient, Poisson's ratio, and elastic modulus. The article contains a table that lists the characteristics of various grades...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003119
EISBN: 978-1-62708-199-3
... Abstract Stainless steel powder metallurgy (P/M) parts represent an important and growing segment of the P/M industry. This article describes the processing, properties, and composition of medium-density and high-density P/M stainless steels. Medium-density materials are processed by pressing...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006119
EISBN: 978-1-62708-175-7
... Abstract Powder metallurgy (PM) stainless steels, as with conventional PM steels, are often used in the as-sintered condition. In addition to cost considerations, minimization of postsinter handling and secondary operations is also preferred because it reduces the potential for contamination...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006120
EISBN: 978-1-62708-175-7
... Abstract This article describes the factors influencing the room-temperature and elevated-temperature mechanical properties of powder metallurgy (PM) stainless steels. It contains tables that list the mechanical property specifications of the Metal Powder Industries Federation (MPIF) Standard...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006118
EISBN: 978-1-62708-175-7
... Abstract This article describes the sintering behavior of austenitic, ferritic, and martensitic stainless steels. It presents different sintering schedules that are selected by Metal Powder Industries Federation (MPIF). The article provides information on the equipment and atmospheres used...
Image
Published: 30 September 2015
Fig. 15 Effect of three different shapes of −325-mesh powder addition to a +325-mesh distribution on apparent density of 316 stainless steel powder More
Image
Published: 30 September 2015
Fig. 11 Compactibility (green strength) of ferritic stainless steel 434-L powder in the annealed and unannealed condition More
Image
Published: 30 September 2015
Fig. 1 316 stainless steel. (a) As-compacted powder particles. (b) Sintered at 1066 °C (1950 °F) for 30 min. (c) Sintered at 1121 °C (2050 °F) for 30 min. (d) Sintered at 1316 °C (2400 °F) for 2 h. ∼650× More