Skip Nav Destination
Close Modal
Search Results for
stainless steel metallography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 251 Search Results for
stainless steel metallography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... examination microstructures stainless steel metallography stainless steel microstructures STAINLESS STEELS are complex alloys containing a minimum of 11% Cr plus other elements to produce ferritic, martensitic, austenitic, duplex, or precipitation-hardenable grades. Procedures used to prepare...
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials. biomedical orthopedic alloys cobalt-base alloys implantable surgical devices metallography microstructure porous coatings quality control stainless steels titanium...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Image
Published: 15 December 2019
Fig. 2 Examples of uses for metallography. (a) Equiaxed ferrite grain size in plain carbon steel. (b) Ion-carburized gear tooth showing case depth. (c) Microstructure of galvanized coating on steel—thickness and quality. (d) Multipass weld quality in type 304 stainless steel plate. Source
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003751
EISBN: 978-1-62708-177-1
... given in this article give the reader a solid idea how field metallographic techniques are employed. Basically, the metallographer should consider field metallography as simply an extension of the metallographic laboratory. Although the examples given in this article are mostly of steels and cast irons...
Abstract
This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation in the metallographic laboratory: grinding, polishing, etching, preparing a replica, and obtaining a small sample. The article also illustrates the applications of field metallography with case studies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... in titanium and copper in stainless steel. These cracks often are in locations where there is no stress, and manufacturing does not produce cracks of this type. Caution: The example in Fig. 19 was caused during sectioning for metallography. Fig. 19 (a) Cracks in the head recess of a titanium fastener...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
..., the microstructures produced by dissimilar-metal welding cannot be accurately predicted, and metallography must be used to evaluate the weld structures to ensure that no deleterious phases are present. However, in welded joints of carbon or alloy steels and stainless steels, predictions can be made using a Schaeffler...
Abstract
This article provides a review of metallographic procedures and techniques for analyzing the microstructure of fusion welded joints. It discusses sample preparation, the use of backing plates, and common sectioning methods. It identifies the various types of defects that can occur in arc welded metals, organizing them according to the sectioning method by which they are observed. It describes the relationship between weld bead morphology and sectioning direction and its effect on measurement error. The article examines micrographs from stainless steel, aluminum, and titanium alloy joints, highlighting important details such as solidification and solid-state transformation structures and what they reveal about the welding process. Besides arc welding, it also discusses laser and electron beam welding methods, resistance and spot welding, and the welding of dissimilar metals.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
.... However, these etchants are used infrequently today. Electrolytic etching with strong basic solutions also produces color films and is widely used with stainless steels to color delta ferrite or sigma phase ( Fig. 18 ). Alkaline sodium picrate is widely used to color cementite in steels, as shown in Fig...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... not reveal the structure of an IF steel. Only a few portions of grain boundaries are missing. Figure 7 depicts delta ferrite in a billet of 17-4 PH martensitic stainless steel revealed selectively by etching with Murakami’s reagent at ~100 °C (~210 °F). The uniform coloring of delta ferrite is ideal...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003749
EISBN: 978-1-62708-177-1
..., high-speed tool steels, and austenitic stainless steel weldments. Color Etching Color etching, also commonly referred to as tint etching, has been used to color many metals and alloys, such as cast irons, steels, stainless steels, nickel-base alloys, copper-base alloys, molybdenum, tungsten...
Abstract
Metallographic contrasting methods include various electrochemical, optical, and physical etching techniques, which in turn are enhanced by the formation of a thin transparent film on the specimen surface. This article primarily discusses etching in conjunction with light microscopy and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching, macroetching, electropolishing, chemical polishing, and other similar operations.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
...) on the surface of a prepared specimen of Ti-6%Al-2%Sn-4%Zr-2%Mo. The specimen was not etched. Fig. 14 Light micrographs depicting (a) excessive and (b) low relief around voids in a braze between an austenitic stainless steel and Monel. The specimen was etched with glyceregia. Fig. 15 Light...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content. quantitative metallography quantitative microstructural measurement grain size Overview Introduction Many tasks performed by metallographers are done simply by visual...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003813
EISBN: 978-1-62708-183-2
... may be reduced 95% from its initial value ( Ref 1 , 2 ). It has been demonstrated that the impact properties of duplex stainless steels in the solution heat treated condition, in the cast and wrought form, are comparable ( Fig. 4 ). More information on the metallography and microstructures...
Abstract
Cast stainless steels are usually specified on the basis of composition by using the alloy designation system established by the Alloy Casting Institute. This article discusses the corrosion behavior of heat-resistant alloys due to oxidation, sulfidation, and carburization. It describes the influence of the metallurgy of corrosion-resistant stainless steels on general corrosion, intergranular corrosion, localized corrosion, corrosion fatigue, and stress corrosion.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003720
EISBN: 978-1-62708-177-1
... Abstract This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle...
Abstract
This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle, and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures, and discontinuities that are present in a microstructure. It concludes with information on image analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
..., grinding, and rough polishing. This occurs to some degree even in materials whose pores have been filled with plastic resins. Proper polishing should open the smeared pores, then reveal their true shapes and area fractions. Routine metallography of the type used on a medium-carbon, ingot-base steel...
Abstract
This article provides information on the microstructure of powder metal alloys and the special handling requirements of porous materials. It covers selection, sectioning, mounting, grinding, and polishing, and describes procedures, such as washing, liquid removal, and impregnation, meant to preserve pore structures and keep them open for analysis. The article compares and contrasts the microstructures of nearly 50 powder metal alloys, using them to illustrate the effect of consolidation and compaction methods as well as particle size, composition, and shape. It discusses imaging equipment and techniques and provides data on etchants and etching procedures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... of American Iron and Steel Institute (AISI) 304 stainless steel. Scanning electron microscope examination of the fracture face reveals extensive microvoid coalescence, that is, ductile rupture, although the impact strength (at −196 °C, or −320 °F) was only 40% of that of a nonsensitized sample. The partially...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003746
EISBN: 978-1-62708-177-1
... of using the mesolevel of metallography (see Fig. 5 ). A metallographic specimen of a small fastener as-cold-headed for grain flow may also be considered a mesoscale structure analysis. Fig. 5 Microetch coupon of a case-hardened steel with Knoop microindentation hardness profile. This section...
Abstract
This article describes the sectioning process, some general practices, common tools, and guidelines on how to select a cutting tool for a given metallographic sectioning operation. It provides a discussion on the consumable-abrasive cutting and nonconsumable-abrasive cutting methods for metallographic sectioning. Other methods, including the use of hacksaws, shears, burning torches, wire saws, and electrical discharge machining, are also reviewed. The article reviews the issues related to the specimen test location for certification work as well as process troubleshooting and component failure analysis.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... (a) … 38 (b) Austenitic stainless steels 611–697 9 20 5 40 11 87 (c) Martensitic stainless steels 698–719 2 4 7 … 9 22 Precipitation-hardening stainless steels 720–747 1 2 7 18 … 28 Tool steels 748–797 1 2 26 21 … 50 Maraging steels 798–822 … … 3...
Abstract
This article provides an overview of how fractographs in this Atlas are organized and presented. It contains a table that lists the distribution content of illustrations for various materials discussed in the Atlas. The causes of fractures for various ferrous and nonferrous alloys and engineered materials are also illustrated.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
..., namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... Abstract This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common...
Abstract
This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and complex mixtures of constituents (single or combination of two phases) that are encountered in iron-base alloys and the complex structure that is observed in these microstructures. The single-phase constituents discussed in the article include austenite, ferrite, delta ferrite, cementite, various alloy carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... high conductivity. Source: Ref 1 Electrolytic Polishing <xref rid="a0003748-ref2" ref-type="bibr">(Ref 2)</xref> Electrolytic polishing, or electropolishing, is used widely in the metallography of stainless steels, copper alloys, aluminum alloys, magnesium, zirconium, and other metals...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
1