1-20 of 3472 Search Results for

stainless steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
... Abstract Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005959
EISBN: 978-1-62708-168-9
... Abstract Low-temperature surface hardening is mostly applied to austenitic stainless steels when a combination of excellent corrosion performance and wear performance is required. This article provides a brief history of low-temperature surface hardening of stainless steel, followed...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004103
EISBN: 978-1-62708-184-9
... water used in pharmaceutical production is water for injection (WFI). This article presents the steps for preparing WFI and discusses the effect of chlorides on stainless steel. It provides information on the passive layer of stainless steels and chromium-containing nickel alloys. The article provides...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005139
EISBN: 978-1-62708-186-3
... Abstract This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003622
EISBN: 978-1-62708-182-5
... Abstract This article reviews the metallurgical factors associated with welding. It provides a discussion on the preferential attack associated with weld metal precipitates in austenitic stainless steels. The article describes the corrosion associated with postweld and weld backing rings...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003180
EISBN: 978-1-62708-199-3
... Abstract Characteristics of stainless steel that affect its formability include yield strength, tensile strength, and ductility, in addition to the effect of work hardening on these properties. This article discusses the forming process of stainless steel, heat-resistant alloys and refractory...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
... Abstract This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006068
EISBN: 978-1-62708-175-7
... Abstract This article provides information on the process details that differ from general water atomization of metals as they relate to basic and engineering properties that are specific to stainless steel powders. The discussion focuses on the compacting-grade stainless steel powders...
Image
Published: 01 December 2004
Fig. 3 Example of flashing when a stainless steel (duplex stainless steel in this case), polished with colloidal silica, is etched with a reagent containing chlorine ions. Glyceregia etch More
Image
Published: 01 January 2005
Fig. 44 A stainless steel paddle stirrer was clamped to a stainless steel spindle using a small carbon steel screw ( Fig. 45 ). The fitting worked loose due to localized crevice corrosion exacerbated by galvanic attack. The large cathodic area of the stirrer enhanced the corrosion of the small More
Image
Published: 01 January 1994
Fig. 2 Stress in thin copper plate deposited on stainless steel spirals. Stainless steel spirals are 0.127 mm (0.005 in.) thick. Source: Ref 8 More
Image
Published: 01 January 1993
Fig. 2 Procedures for joining austenitic stainless steel to stainless-clad carbon steel, carbon steel, and low-alloy steel. Stainless-clad, low-alloy, or carbon steel edges are beveled for welding (a and f). An overlay (or “buttering” layer) of stainless steel filler metal is applied More
Image
Published: 01 January 2005
Fig. 32 Arrangement of type 303 stainless steel plugs in the type 304 stainless steel plate shown in Fig. 31 . The original design of a type 303 plug with a type 304 stainless steel overlay is shown. More
Image
Published: 01 January 2005
Fig. 39 A type 321 stainless steel bellows hose jacketed with a type 304 stainless steel braid leaked in 3 months, while other hoses lasted for approximately 1 year. The flexible hose was used to transfer sulfur-containing organic fluids from a tank car. The cause of attack was extreme pitting More
Image
Published: 01 January 1990
Fig. 11 Relaxation curves for steel helical springs made of (a) 302 stainless steel and (b) 631 stainless steel. The curves represent relaxation after exposure for 72 h at the indicated temperatures. More
Image
Published: 01 January 2006
Fig. 11 Corrosion rates for type 304 stainless steel and carbon steel in static anhydrous hydrogen fluoride vapor. Type 304 corrosion rates are erratic above 100 °C (210 °F). More
Image
Published: 01 January 2006
Fig. 43 Hydrogen-induced disbonding of stainless steel clad plate steel produced in a laboratory test in accordance with ASTM G 146 in high-pressure hydrogen. The crack is in the stainless steel cladding shown at the top of the micrograph. 200× More
Image
Published: 01 December 2008
Fig. 1 Two applications of Replicast steel parts. (a) CF-8M stainless steel 150 mm (6 in.) butterfly valve body. The part is approximately 305 mm (12 in.) in outside diameter, 64 mm (2 1 2 in.) thick, and weighs 11 kg (25 lb). Note as-cast bolt holes and O-ring groove. (b) 8640 steel More
Image
Published: 30 September 2015
Fig. 18 Galvanic corrosion of carbon steel coupled to stainless steel in a water tank More
Image
Published: 31 October 2011
Fig. 20 Cost comparison for cutting of stainless steel and mild steel. Because high-pressure N 2 assist gas is required for cutting stainless steel, the cutting costs are approximately double those for cutting mild steel. Adapted from data courtesy of BLM Group More