1-20 of 815 Search Results for

springs

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... Abstract Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... Abstract This article discusses the common causes of failures of springs, with illustrations. Design deficiencies, material defects, processing errors or deficiencies, and unusual operating conditions are the common causes of spring failures. In most cases, these causes result in failure...
Book Chapter

By Mark Hayes
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002377
EISBN: 978-1-62708-193-1
... Abstract This article discusses the failure mechanism of springs. It describes the critical application factors that affect spring fatigue performance. These include: material type and strength; stress conditions; surface quality; manufacturing processes; rate of application of load...
Book Chapter

By Loren Godfrey
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001019
EISBN: 978-1-62708-161-0
... Abstract Steel springs are made in many types, shapes, and sizes, ranging from delicate hairsprings for instrument meters to massive buffer springs for railroad equipment. The primary focus of this article is small steel springs that are cold wound from wire. Wire springs are of four types...
Image
Published: 01 December 1998
Fig. 19 Mechanism for winding springs that have coils of varying diameters More
Image
Published: 01 December 2004
Fig. 34 Microstructure of Elgiloy, a cobalt-base alloy used for watch springs (Co-20%Cr-15%Fe-15%Ni-2%Mn-7%Mo-0.05%B-0.15%C), after hot rolling and solution annealing (1040 °C, or 1900 °F, for 2 h, water quenched). The specimen is partially recrystallized. The specimen was tint etched More
Image
Published: 01 January 1997
Fig. 3 Residual stresses in an assembly of two springs with unequal initia