1-20 of 730

Search Results for spray deposition

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 August 2013
Fig. 4 Variation of cold spray deposition efficiency of titanium coatings with process parameters. SOD, standoff distance (nozzle); PFR, powder feed rate; T, temperature. Source: Ref 15 More
Image
Published: 01 January 2006
Fig. 5 Schematics showing (a) coating deposition in thermal spray processes and (b) the morphology of thermal spray coatings More
Image
Published: 01 August 2013
Fig. 13 The spray pattern, illustrating particle deposition and the effect of size and debris on thickness and porosity in cross section More
Image
Published: 01 August 2013
Fig. 5 Columnar-like microstructure of a plasma spray-physical vapor deposition yttria-stabilized zirconia thermal barrier coating deposited on an MCrAlY bond coat. Source: Ref 39 More
Image
Published: 01 August 2013
Fig. 7 Plasma spray-physical vapor deposition coating exhibiting an ~190 μm (7.5 mils) thick columnar structure and an ~15 to 20 μm (0.6 to 0.8 mil) thick sealing top layer. Source: Ref 42 More
Image
Published: 01 August 2013
Fig. 9 Rare-earth silicate gastight plasma spray-physical vapor deposition environmental barrier coating. Source: Ref 50 More
Image
Published: 01 January 1994
Fig. 9 Ground-coat enameling, acid-etch/nickel-deposition process (dip or spray application) No. Solution Composition Temperature Cycle time, min °C °F Dip Spray 1 Alkaline cleaner (a) Cleaner, 15–60 g/L (2–8 oz/gal) (b) Ambient to 100 (c) Ambient to 212 (c) 6–12 More
Image
Published: 01 December 1998
Fig. 7 Ground-coat enameling, acid-etch/nickel-deposition process (dip or spray application) No. Solution Composition Temperature Cycle time, min °C °F Dip Spray 1 Alkaline cleaner (a) Cleaner, 15–60 g/L (2–8 oz/gal) (b) Ambient to 100 (c) Ambient to 212 (c) 6–12 More
Image
Published: 01 August 2013
Fig. 9 Comparison of thermal spray coatings deposited on macroroughened and smooth surfaces. (a) Sprayed metal over grooves; shrinkage constrained by grooves. (b) Sprayed metal on smooth surface; effect of shear stress on bond due to shrinkage. Adapted from Ref 3 More
Image
Published: 01 August 2013
Fig. 8 Comparison of thermal spray coatings deposited on macroroughened and smooth surfaces. (a) Sprayed metal over grooves; shrinkage constrained by grooves. (b) Sprayed metal on smooth surface; effect of shear stress on bond due to shrinkage. Adapted from Ref 2 More
Image
Published: 01 August 2013
Fig. 3 Examples of thermal spray coatings deposited on pulp and paper processing components. (a) Roll used in the paper industry being coated with tungsten carbide to provide a traction coating. (b) Suction roll that has been coated with tungsten carbide. Courtesy of ASB Industries More
Book Chapter

By Daryl E. Crawmer
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005717
EISBN: 978-1-62708-171-9
... Abstract The hazards associated with thermal spray deposition processes include ultraviolet and infrared radiation; acoustical noise; and by-product production in the forms of nitrous oxides, ozone, fumes, and dust. The most important consideration in health and safety is to use the engineered...
Book Chapter

By Jeganathan Karthikeyan
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... and the parameters that affect both the process deposition efficiency and properties of the prepared coatings. It describes a variety of cold spray coating materials, namely, pure metals, ferrous and nonferrous metal alloys, composites, and cermets. The article presents various industrial applications of cold spray...
Book Chapter

Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
...-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... between thermal spray deposits and sub- weld. strate, or between adhesive and adherend in an adhesive bonded joint. *Adapted from Glossary of Terms, ASM Handbook, Volume 6, Welding, Brazing, and Soldering, ASM International, 1993. Glossary of Terms / 883 bottle A nonstandard term for gas cylinder. C cone...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
... Abstract Significant expansion of thermal spray technology occurred with the invention of plasma spray, detonation gun, and high-velocity oxyfuel (HVOF) deposition technologies. This article provides a brief history of the major initiating inventions/developments of thermal spray processes...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006572
EISBN: 978-1-62708-290-7
... intended application at the lowest operational temperatures and gas flows. Cold spray deposits are typically anisotropic in properties and microstructure. Figure 4 shows powder morphology before cold spray deposition and the subsequent microstructure of the deposit. Some main limitations...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... mounting planar grinding rough polishing sectioning specimen preparation thermal spray coatings THERMAL SPRAY is a generic term for a “family” of coating processes used to deposit metallic or nonmetallic coatings. During the process, powders, wires, or rods are injected into combustion-, electric...
Book Chapter

By Herbert Herman, Robert A. Sulit
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel. Additional information on thermal spray processes is available in the article “Hardfacing, Weld Cladding, and Dissimilar Metal Joining” in this Volume. Thermal spraying processes deposit finely divided metallic...