1-20 of 22 Search Results for

split-Hopkinson bar tension test

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2000
Fig. 14 Split-Hopkinson bar test using threaded tension specimen. (a) Schematic of tensile loading apparatus. Source: Ref 48 . (b) Lagrangian diagram for tensile loading apparatus. CRO, cathode ray oscilloscope More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
..., and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed. high strain rate compression test cam plastometer test the drop tower compression test flyer...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... concludes with a discussion on the split-Hopkinson pressure bar test. compression testing fatigue testing fiber-reinforced composites flexure testing interlaminar failure mechanical properties mechanical testing nondestructive techniques shear testing split-hopkinson pressure bar test strain...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... Abstract This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
...-Hopkinson Pressure Bar Testing of Ceramics” ). For high-temperature tests new techniques are required, such as elevated-temperature testing discussed in the article “Recovery Hopkinson Bar Techniques.” The split-Hopkinson technique has also been extended to include testing ductile materials in tension...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
... when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed. high-strain-rate stress-strain response sample design stress-state stability split-Hopkinson pressure bar testing data reduction wave dispersion sample preparation...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003301
EISBN: 978-1-62708-176-4
... composites, and other materials with relatively course microstructures. Except for a 6 ft brake bar to absorb the momentum and dissipate the energy, the system is similar to the classical Hopkinson bar discussed in the article “Classic Split-Hopkinson Pressure Bar Testing” in this section. The brake bar...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003297
EISBN: 978-1-62708-176-4
... Hopkinson bar technique stress-reversal technique strain rate THE CLASSICAL split-Hopkinson bar technique is described in separate articles in this Section for tension, compression, and torsion tests. For all three cases, the stress pulse travels along the incident bar and is partly transmitted...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003302
EISBN: 978-1-62708-176-4
... Abstract This article describes a method for determining the dynamic indentation response of metals and ceramics. This method, based on split Hopkinson pressure bar testing, can determine rate-dependent characteristics of metals and ceramics at moderate strain rates. For example, dynamic...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
.... Eliminating time yields the stress-strain curve for the material at the strain rate provided through Eq 7 . Double-Notch Shear Testing and Punch Loading Kolsky or split-Hopkinson bar testing in compression, tension, or torsion is governed by an upper limit (on the strain rate that can be achieved...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... Rate Testing” in Mechanical Testing and Evaluation , Volume 8 of the ASM Handbook , 2000, p 427). For strain rates from 100 to 1000 s −1 , the Hopkinson (Kolsky)-bar method is used. This article and the following discussions only consider isothermal conditions and strain rates below 0.1 s −1 , where...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003308
EISBN: 978-1-62708-176-4
... parameters that are useful in design. However, many qualitative methods have also been used in the evaluation of impact energy to break a notched bar, percent of cleavage area on fracture surfaces, or the temperature for nil ductility or crack arrest. These qualitative tests include methods...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... tests such as split-Hopkinson pressure bar (SHPB) tests. Split-Hopkinson pressure bar tests allow an estimation of the strain rate sensitivity ( Ref 67 ) that can be included in FEM simulations using a model such as the Johnson-Cook plasticity model in which a logarithmic dependency of flow stress...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006495
EISBN: 978-1-62708-207-5
... < 100 s −1 ). (b) Quasi-static (strain rate < 1 s −1 ) versus split-Hopkinson pressure bar (SHPB) testing (strain rate approximately 1000 s −1 ) Tensile Behavior and Ductility Most types of metal foams exhibit a rather low ductility, so that, in the case of tensile or bending loads, foams...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... high-speed compression tests can only produce usable results at strain rates up to 450/s ( Ref 23 ). The Kolsky or split Hopkinson bar test measures dynamic stress-strain response via a series of bars that transmit a pressure pulse through the test sample. Strain gages are used to measure incident...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006952
EISBN: 978-1-62708-439-0
... the strain-rate dependence of the base material. For example, AM airplane components are subjected to dynamic impact loads while in operation, and their ability to sustain toughness and high strength under high strain rates may be critical in preventing component failure. The split Hopkinson bar (SHB...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006951
EISBN: 978-1-62708-439-0
...-rate testing approaching impact velocities is generally conducted using the split Hopkinson pressure bar technique (or Kolsky bar) over strain-rate regimes of approximately 10 3 s −1 ( Ref 39 , 41 – 43 ). Blast Lattices have been proposed as alternatives to traditional foams that are used...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
... as dimple rupture. Fig. 1 Influence of direction of maximum stress (σ max ) on the shapes of dimples formed by microvoid coalescence. (a) In tension, equiaxed dimples are formed on both fracture surfaces. (b) In shear, elongated dimples point in opposite directions on matching fracture surfaces. (c...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.9781627082907
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006972
EISBN: 978-1-62708-439-0
.... There are several unique transport phenomena that occur within the melt pool, including surface-tension-gradient-driven flow, that is, Marangoni convection; density-gradient-driven flow, that is, free convection; vaporization; and free surface instability. As shown later in this article, most L-PBF defects...