Skip Nav Destination
Close Modal
Search Results for
spinodal transformation structure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
spinodal transformation structure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
... article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal...
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
... growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure...
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... the beta phase in the copper-zinc system. Rapid cooling from the high-temperature beta phase in copper-aluminum alloys generates a martensitic transformation (as in steels) to produce a nonequilibrium phase (β′) that has a hexagonal crystal structure and is ordered. Other elements and metals are...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
.... The processes of hardening copper alloys by isothermal transformation (aging) include precipitation hardening, spinodal hardening, and order hardening. The quench-hardening alloys include aluminum bronzes, nickel-aluminum bronzes, and a few special Cu-Zn-Al shape memory alloys...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... to an increase of strength. The clusters are metastable and continue to evolve into other precipitates, the composition, size, shape, and crystal structure of which may differ. The transition between different types of precipitates may be a gradual transformation via exchange of atoms on specific...
Abstract
This article describes the effects of alloying and heat treatment on the metastable transition precipitates that occur in age hardenable aluminum alloys. Early precipitation stages are less well understood than later ones. This article details the aging sequence and characteristics of precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of reversion, duplex annealing, and retrogression and re-aging are included.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... ( Ref 27 ) have been reported. In addition, a metastable ordered L1 2 structure has been observed ( Ref 29 ). This metastable phase can form at low temperatures from supersaturated solid solution and will transform to the equilibrium tetragonal DO 23 at elevated temperatures. The cubic L1 2 structure...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
... evolve toward a more stable state and to reach its equilibrium. Because the parent phase is not unstable, this transformation cannot proceed through the continuous development of growing infinitesimal perturbations delocalized in the whole phase, that is, by spinodal decomposition ( Ref 13 , 14 ). Such...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
... phase transformations occur—the alloys are austenitic from the melting temperature down to absolute zero. While some precipitates may form such as carbides and the γ′ hardening phase, these do not change the basic austenitic-type structure of the matrix. TITANIUM AND TITANIUM ALLOYS...
Abstract
This article discusses different heat treating techniques, including quenching, homogenizing, annealing, stress relieving, stress equalizing, quench hardening, strain hardening, tempering, solution heat treating, and precipitation heat treating (age hardening) for different grades of aluminum alloys, copper alloys, magnesium alloys, nickel and nickel alloys, and titanium and titanium alloys and its product forms.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... alloys. Because of its low strength, the pure metal is not regarded as a structural material and is rarely used in monolithic form. Rather, the metal is most frequently used as coating for other metals and in alloys to impart corrosion resistance, enhance appearance, or improve solderability. It also...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
..., and spectrometry techniques with data analysis. electron diffraction transmission electron microscopy crystal structure Microstructure observation is an essential approach for materials characterization, which is primarily performed by using light optical microscopy and...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003131
EISBN: 978-1-62708-199-3
... bearings and filters, are made by P/M methods. Structural parts, including high-strength oxide-dispersion-strengthened (ODS) copper alloys are also produced by P/M. The copper industry in the United States, broadly speaking, is composed of two segments: producers (mining, smelting...
Abstract
Copper and copper alloys are widely used because of their excellent electrical and thermal conductivities, outstanding resistance to corrosion, and ease of fabrication, together with good strength and fatigue resistance. This article provides an overview of property and fabrication characteristics, markets, and applications of copper and its alloys. It contains several tables that provide helpful information on the chemical composition, classification, designation, uses, and mechanical properties of wrought copper and copper alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004014
EISBN: 978-1-62708-185-6
.../unitized structure and, in most cases, improved materials properties (which allows thinner walls). Other important advantages may include reduced need for welding fabrication (and the nondestructive evaluation of weld integrity), reduced length of starting stock, and inventory reduction. Process...
Abstract
A wide range of flow-formed open- and close-ended shapes are currently available in a variety of difficult-to-form materials, including titanium alloys and nickel-base super alloys. This article describes the two basic methods of flow forming that are characterized by the position of the rolls during the forming process. The flow forming methods include staggered-roll flow forming process and in-line flow-forming process. Typical mechanical properties of flow-formed materials in various conditions are summarized in a table. Proper process controls and subsequent product qualification tests are critical to assure optimal performance of the flow-formed tubular component. The article discusses the most commonly required process control parameters and the effects of forming speed and temperature in the flow forming process.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
... which the aforementioned bronzes are based. The heat treatability of each of these four types of bronzes is explored in terms of their liquidus temperature, solidus temperature, solid-solution hardening, solvus temperature, freezing range temperature, and phase transformation reactions (e.g., peritectic...
Abstract
Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes, nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
.... Table 2 Distinguishing characteristics of brittle versus ductile behavior depending on the scale of observation Scale of observation Brittle behavior Ductile behavior Structural engineer Applied stress at failure is less than the yield stress Applied stress at failure is greater...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
... notably, the beryllium copper alloys. Cu-Ni-Al and Cu-Ni-Si alloys are also commercially important precipitation-hardenable alloys. Spinodal and/or precipitation hardening is available in the Cu-Ni-Sn and Cu-Ni-Cr systems. Hardening by martensite transformation is available in the copper-aluminum system...
Abstract
This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel alloys, titanium alloys, and platinum metals. It discusses the formability, equipment and tooling, and lubricants used in the forming operations of these nonferrous metals.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... should begin with visual inspection, perhaps aided by the use of a simple hand lens (up to 10 ×). In failure analyses, it may be necessary to examine the entire component or structure to find the broken sections, to determine the origin of the failure, and to separate the fractures according to the time...
Abstract
This article presents examples of the visual fracture examination that illustrate the procedure as it applies to failure analysis and quality determination. It describes the techniques and procedures for the visual and light microscopic examination of fracture surfaces with illustrations. The article also describes microscopic and macroscopic features of the different fracture mechanisms with illustrations with emphasis on visual and light microscopy examination. The types of fractures considered include ductile fractures, tensile-test fractures, brittle fractures, fatigue fractures, and high-temperature fractures.