Skip Nav Destination
Close Modal
Search Results for
spinodal decomposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 55 Search Results for
spinodal decomposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2004
Fig. 2 Regions of spinodal decomposition and classical nucleation and growth of precipitates. (a) Phase diagram with a miscibility gap. (b) Variation in free energy with composition for the system shown in (a) at temperature T ′. Source: Ref 2
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
... decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram. alloy phases binary phase diagram chemical composition...
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003732
EISBN: 978-1-62708-177-1
...Abstract Abstract Spinodal transformation is a phase-separation reaction that occurs from kinetic behavior. This article discusses the theory of spinodal decomposition, and outlines the methods used in the characterization of spinodal structures in metal matrices. microstructure spinodal...
Image
Published: 01 December 2004
Fig. 7 Backscatter scanning electron micrograph of an iron-copper alloy that was rapidly solidified after undergoing liquid-phase spinodal decomposition. Source: Ref 5
More
Image
Published: 01 December 2004
Fig. 1 Two sequences for the formation of a two-phase mixture by diffusion processes. (a) Classical nucleation and growth. (b) Spinodal decomposition. Source: Adapted from Ref 1 , 2
More
Image
Published: 01 December 2004
Fig. 4 Miscibility gap. Region 1: homogenous α is stable. Region 2: homogenous α is metastable, only incoherent phases can nucleate. Region 3: homogeneous α metastable, coherent phases can nucleate. Region 4: homogeneous α unstable, spinodal decomposition occurs. Source: Ref 4
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
... nucleation and growth (e.g., spinodal decomposition). To further complicate the classification of the transformations, crystallography influences most transformations (e.g., pearlite, bainite, martensite, and precipitation). Christian ( Ref 1 ) has classified solid-state transformations according...
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Image
Published: 01 January 1996
Fig. 21 Electron micrographs of aged type 308 weld. (a) Aged at 475 ° C for 1000 h, showing mottled structure indicative of spinodal decomposition of the δ-ferrite and extensive G-phase precipitation. (b) Aged at 475 °C for 4950 h, showing M 23 C 6 carbides at austenitic-ferrite interface
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
... for interpreting the scattering from multicomponent materials undergoing phase separation depends on the assumed mechanism, that is, nucleation and growth versus spinodal decomposition. Because nucleation involves the formation of nuclei and growth at random locations within the material, Eq 4 can be used...
Abstract
This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source, desmearing parameters, and the types of scattering curves are illustrated.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000619
EISBN: 978-1-62708-181-8
... by quasi-cleavage. SEM, 600× Fig. 906 Tensile-overload fracture in a fracture-toughness specimen of 64Cu-27Ni-9Fe alloy that underwent spinodal decomposition during heat treatment for 10 h at 775 °C (1425 °F). The surface contains many intergranular facets with intervening regions of dimpled...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of copper alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: fatigue fracture, intergranular fracture, transgranular fracture, microvoid coalescence, corrosion fatigue, fatigue striations, tensile-overload fracture, stress-corrosion cracking, and pitting corrosion of these alloys.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
..., are hardenable by spinodal decomposition, a mechanism that provides high strength and good ductility through the homogeneous formation of a periodic array of coherent, fcc solid-solution phases. Each of these alloys, including the beryllium-coppers, can be thermomechanically processed to provide unique...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... the β-phase matrix ( Ref 7 , 8 , 9 ), pseudospinodal decomposition ( Ref 7 , 8 , 9 ), and spinodal decomposition of intermediate α phase obtained via congruent β → α transformation ( Ref 10 ). These TPs provide ample opportunities to engineer desired microstructures in terms of size, shape...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
..., this transformation cannot proceed through the continuous development of growing infinitesimal perturbations delocalized in the whole phase, that is, by spinodal decomposition ( Ref 13 , 14 ). Such perturbations in a metastable state increase the free energy. As a consequence, they can appear because of thermal...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001772
EISBN: 978-1-62708-178-8
... of such phenomena as surface and interface segregation, ordering, clustering, precipitation, and spinodal decomposition. However, their interpretation necessitates care because of the three-dimensionality of the sample. This is illustrated in Fig. 19 , with reference to analysis across an interphase interface...
Abstract
Field ion microscopy (FIM) can be used to study the three-dimensional structure of materials, such as metals and semiconductors, because successive atom layers can be ionized and removed from the surface by field evaporation. The ions removed from the surface by field evaporation can be analyzed chemically by coupling to the microscope a time-of-flight mass spectrometer of single-particle sensitivity, known as the atom probe (AP). This article describes the principles, sample preparation, and quantitative analysis of FIM. It also provides information on the principles, instrument design and operation, mass spectra and their interpretation, and applications of AP microanalysis.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... °F (474 °C) embrittlement, which is common to ferritic steels with high chromium ( Ref 102 ), is operative in the δ-ferrite because its composition is similar to that of a ferritic steel. This mechanism, also known as α′ embrittlement, results from the spinodal decomposition of δ-ferrite into low...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003731
EISBN: 978-1-62708-177-1
...-ray diffraction studies). Guinier-Preston (GP) zones are solute-rich clusters resulting from phase separation or precipitation within a metastable miscibility gap in the alloy system. They may form by homogeneous nucleation and grow at small undercoolings or by spinodal decomposition at large...
Abstract
Precipitation reactions occur in many different alloy systems when one phase transforms into a mixed-phase system as a result of cooling from high temperatures. This article discusses the homogenous and heterogeneous nucleation and growth of coherent and semicoherent precipitates. It describes two precipitation modes, namely, general or continuous precipitation and cellular or discontinuous precipitation. The article also provides information on the precipitation sequences in aluminum alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001094
EISBN: 978-1-62708-162-7
... in stages to maximize directional magnetic properties in the final shape. The nature of the phase diagram, the periodicity of the microstructure and x-ray diffraction effects all support the view that the magnetic structure develops by spinodal decomposition. The coercive force can be accounted...
Abstract
This article discusses the chief magnetic characteristics of permanent magnet materials. It provides a detailed description on nominal compositions; principal magnet designations; magnetic, physical, and mechanical properties; selection criteria; and applications of the permanent magnet materials, which include magnet steels, magnet alloys, alnico alloys, platinum-cobalt alloys, cobalt and rare-earth alloys, hard ferrites, iron-chromium-cobalt alloys, and neodymium-iron-boron alloys.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003721
EISBN: 978-1-62708-177-1
... and resistant to microstructural coarsening. Structures in which Each Phase is Closely Interconnected Structures in which each phase is closely interconnected can result from spinodal decomposition (see the article “Spinodal Transformation Structures” in this Volume). The scale of these spinodal...
Abstract
This article provides information on the general structural features and origins of metals. The characteristic structural features of single-phase metals and alloys, such as grain structure and substructure, are discussed. The article also describes the major types of multiphase structures and macrostructure of metals and alloys.