1-20 of 369 Search Results for

spheroidization

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... changes that occur due to the heat treatment of cast alloys. artificial aging nonferrous castings heat treatment microstructural changes natural aging precipitation quenching solution heat treatment spheroidization cast alloys dissolution HEAT TREATMENT in the broadest sense refers to...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
... discussion on the nucleation and growth of austenite dendrites. It describes the nucleation of lamellar graphite, spheroidal graphite, and austenite-iron carbide eutectic. The article reviews three main graphite morphologies crystallizing from the iron melts during solidification: lamellar (LG), compacted or...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005213
EISBN: 978-1-62708-187-0
...-spheroidal graphite eutectic, and austenite-iron carbide eutectic. The article provides a discussion on primary austenite and primary graphite. Depending on the carbon equivalent, the primary phase in cast iron can be either austenite for hypoeutectic cast iron or graphite for hypereutectic cast iron. The...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005942
EISBN: 978-1-62708-168-9
... Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. The heat treatment of gray irons can considerably alter the matrix microstructure with little or no effect on the size and shape of...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005949
EISBN: 978-1-62708-168-9
... Abstract This article discusses the classification of carbon steels based on carbon content, and tabulates the compositional limits of medium- and high-carbon steels based on the AISI code and other similar codes. It describes recrystallization annealing and spheroidizing of carbon steels, and...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006310
EISBN: 978-1-62708-179-5
... Abstract Unlike gray iron, which contains graphite flakes, ductile iron has an as-cast structure containing graphite particles in the form of small, rounded, spheroidal nodules in a ductile metallic matrix. This article discusses the raw materials that are used for ductile iron production and...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
... untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite. austenite decomposition austenite-to-pearlite transformation...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
... Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information on the classification...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006312
EISBN: 978-1-62708-179-5
... Abstract Compacted graphite iron (CGI) invariably includes some nodular (spheroidal) graphite particles, giving rise to the definition of the microstructure in terms of percent nodularity. This article discusses the graphite morphology and mechanical and physical properties of CGI. The...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006313
EISBN: 978-1-62708-179-5
... surface exhibits some roughness, which depends on the molding materials used in the casting process. The article describes the effects of the casting skin in spheroidal graphite (SG) and compact graphite (CG) irons, as well as the mechanism of casting skin formation. It discusses the physics of liquid...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006345
EISBN: 978-1-62708-179-5
... Abstract Ductile iron, also known as nodular iron or spheroidal graphite iron, is second to gray iron in the amount of casting produced. This article discusses the common grades of ductile iron that differ primarily by the matrix structure that contains the spherical graphite. The grades of...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006346
EISBN: 978-1-62708-179-5
...), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue strength, and...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001004
EISBN: 978-1-62708-161-0
... the final iron is achieved by liquid treatment with different minor elements. CG irons have strength properties close to those of spheroidal graphite (SG) irons, at considerably higher elongations than those of FG iron, and with intermediate thermal conductivities. The main factors affecting the...
Book Chapter

By R.J. Glodowski
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
... for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005787
EISBN: 978-1-62708-165-8
... annealing, supercritical or full annealing, and process annealing. Spheroidizing is performed for improving the cold formability of steels. The article provides guidelines for annealing and tabulates the critical temperature values for selected carbon and low-alloy steels and recommended temperatures and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
... Microstructures of ductile irons. All contain spheroidal graphite. Nital etch; 500×. (a) 100% ferrite; 170 HB. (b) 50% ferrite, 50% pearlite; 207 HB. (c) Spheroidite; 265 HB Fig. 4 Microstructure of malleable irons. All contain nodular graphite or temper carbon. Nital etch; 500×. (a) Ferritic malleable...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
... manufactured using traditional casting methods, the microstructure of products manufactured using semisolid metalworking is not dendritic. During processing, the dendritic structure is broken up and evolves into a spheroidal structure. The mechanical properties of the spheroidal microstructure is superior to...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
... and at austenite grain boundaries. Figure 1 shows samples of spheroidal and flake graphite cast irons austempered for 2 min at 360 °C (680 °F) and then quenched in water. Preferential nucleation of acicular ferrite on the graphite/austenite interface is clearly noticeable ( Ref 1 ). Fig. 1...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
... white iron, with higher carbon equivalent and lower cooling rate favoring gray solidification. Other elements such as sulfur, magnesium, or cerium can significantly alter the morphology of the gray eutectic changing graphite shape from lamellar (flake, FG), to compacted (CG), or spheroidal (SG...