1-20 of 237 Search Results for

spheroidal graphite iron

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006345
EISBN: 978-1-62708-179-5
...Abstract Abstract Ductile iron, also known as nodular iron or spheroidal graphite iron, is second to gray iron in the amount of casting produced. This article discusses the common grades of ductile iron that differ primarily by the matrix structure that contains the spherical graphite...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
... untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite. austenite decomposition austenite-to-pearlite transformation...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006346
EISBN: 978-1-62708-179-5
... graphite (FG), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
... with a discussion on the nucleation and growth of austenite dendrites. It describes the nucleation of lamellar graphite, spheroidal graphite, and austenite-iron carbide eutectic. The article reviews three main graphite morphologies crystallizing from the iron melts during solidification: lamellar (LG), compacted...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001004
EISBN: 978-1-62708-161-0
... to the CG in the final iron is achieved by liquid treatment with different minor elements. CG irons have strength properties close to those of spheroidal graphite (SG) irons, at considerably higher elongations than those of FG iron, and with intermediate thermal conductivities. The main factors affecting...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006310
EISBN: 978-1-62708-179-5
...Abstract Abstract Unlike gray iron, which contains graphite flakes, ductile iron has an as-cast structure containing graphite particles in the form of small, rounded, spheroidal nodules in a ductile metallic matrix. This article discusses the raw materials that are used for ductile iron...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
...Abstract Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
... at a temperature within the typical bainite precipitation temperature range, after an incubation time, acicular ferrite plates begin to nucleate preferentially at austenite/graphite interfaces and at austenite grain boundaries. Figure 1 shows samples of spheroidal and flake graphite cast irons austempered for 2...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005942
EISBN: 978-1-62708-168-9
... °F). Cooling continued from that level at a maximum rate of 130 °C/h (230 °F/h) to 200 °C (390 °F); bars were then air cooled to room temperature. Abstract Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005213
EISBN: 978-1-62708-187-0
..., austenite-spheroidal graphite eutectic, and austenite-iron carbide eutectic. The article provides a discussion on primary austenite and primary graphite. It also describes the growth of eutectic in cast iron in terms of isothermal solidification, directional solidification, and multidirectional...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006312
EISBN: 978-1-62708-179-5
...Abstract Abstract Compacted graphite iron (CGI) invariably includes some nodular (spheroidal) graphite particles, giving rise to the definition of the microstructure in terms of percent nodularity. This article discusses the graphite morphology and mechanical and physical properties of CGI...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... grades, including low-alloyed pearlitic cast iron with flake graphite (pearlitic GI), cast irons with compacted graphite (CGI), and cast irons with spheroidal graphite (SGI), which also are called ductile irons. Recently, new types of ductile irons were added to the traditional foundry arsenal, including...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
..., magnesium, or cerium can significantly alter the morphology of the gray eutectic changing graphite shape from lamellar (flake, FG), to compacted (CG), or spheroidal (SG). Macrostructure Eutectic Grains The macrostructure of gray iron can be visualized by using selective etching to outline...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
...; CGI, compacted graphite iron; SGI, spheroidal graphite iron For cast irons, the elasticity is not easily treated with a constant value, as for steel. The deviation from a linear behavior is largest for lamellar graphite irons, less for compacted graphite irons, and least for nodular cast iron...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006313
EISBN: 978-1-62708-179-5
.... The casting surface exhibits some roughness, which depends on the molding materials used in the casting process. The article describes the effects of the casting skin in spheroidal graphite (SG) and compact graphite (CG) irons, as well as the mechanism of casting skin formation. It discusses the physics...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
... μm, (c) 200 μm, and (d) 100 μm. Here (a), (b), and (c) indicate the microstructures shown in two-dimensional cross section and three-dimensional view of a droplet. Source: Ref 16 Cellular automaton models have also been used to describe the solidification of spheroidal graphite iron. In one...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
..., the theory of eutectic growth was developed by Jackson and Hunt (JH theory) in 1966 ( Ref 5 ), but an analytical treatment accounting for the irregular nature of iron-carbon eutectic was not published until 1987 ( Ref 6 ). As for the growth of divorced eutectic, occurring in spheroidal graphite iron...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
... in cast iron. Left column: optical microscopy, unetched; right column: scanning electron microscopy, deep etched. (a) Lamellar (flake) graphite. Source: Ref 5 . (b) Superfine interdendritic graphite. Source: Ref 40 . (c) Compacted graphite. (d) Spheroidal graphite Depending on the chemical...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... for obtaining common commercial cast irons Classification Principles of the Metallurgy of Cast Iron Gray Iron (Flake or Lamellar Graphite Iron) Ductile Iron (Spheroidal Graphite Iron) Compacted Graphite Irons Malleable Irons Special Cast Irons References References 1...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003109
EISBN: 978-1-62708-199-3
... of the cast iron family. Compacted graphite irons have inadvertently been produced in the past as a result of insufficient magnesium or cerium levels in melts intended to produce spheroidal graphite iron; however, it has only been since 1965 that CG iron has occupied its place in the cast iron family...