Skip Nav Destination
Close Modal
Search Results for
spectrum life prediction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 247
Search Results for spectrum life prediction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
... Abstract The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth...
Abstract
The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... ). The Palmgren-Miner rule was unconservative by factor of three in prediction of the mean fatigue life. Overall, strength-based fatigue models have shown better predictive ability for mean life than the Palmgren-Miner rule. Fig. 9 Comparison of prediction and observed results for spectrum fatigue data...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002356
EISBN: 978-1-62708-193-1
... fatigue tests on steel for off-shore structures tested under a sea wave spectrum ( Ref 34 ). For accurate predictions this is a rather unpleasant problem, which is pragmatically solved by applying empirical life reduction factors. In the last two decades, several standardized service-simulation load...
Abstract
This article summarizes fatigue phenomena in metallic materials. It discusses fatigue under variable-amplitude (VA) loading, with emphasis on crack growth. The article presents the prediction models of crack initiation and crack growth under VA loading. It concludes with a discussion on the conditions associated with engineering applications of VA loading.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
... as the production structure and tested to the design usage spectrum intended to simulate the cycles expected in service. Using these prediction techniques and tools, each structural component is assumed to be capable of exceeding service-life requirements without initiation or nucleation of a crack greater than...
Abstract
This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion types: crevice and pitting corrosion. It describes the rationale and techniques needed to apply the age-based structural integrity processes to in-service structures in order to realize the benefits throughout the full structural life cycle.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
.... The frequency of these inspections is based on the analytically predicted life of critical airframe components. This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. The issue of damage tolerance is applicable to other aircraft...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009217
EISBN: 978-1-62708-176-4
... Growth , in Methods and Models for Predicting Fatigue Crack Growth Under Random Loading , STP 748, ASTM , Philadelphia , 1981 10.1520/STP28335S 37. Chang J.B. , M. Szamossi, and K-W Liu, Random Spectrum Fatigue Crack Life Predictions with or without Considering Load Interactions...
Abstract
Fatigue crack growth rate testing and data analysis are performed to characterize the crack propagation resistance of material environment combinations in order to predict crack growth life under anticipated stress histories. This article presents analyses performed on the numerical output of crack growth rate tests, including the analysis framework for modeling fatigue crack growth rate data. It describes the numerical methods for calculating da/dN as a function of stress intensity factor. The article discusses the principles in fatigue crack growth damage analysis.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005419
EISBN: 978-1-62708-196-2
... loading. (a) Crack-growth comparison between model and experiment. LCD is a linear-cumulative damage model, and α = 1.8 is a constant constraint model. (b) Wing gust and maneuver loading spectrum. Source: Ref 23 Life-Prediction Codes The models for crack growth life-prediction have been...
Abstract
Understanding fatigue crack growth is critical for the safe operation of many structural components. This article reviews the standard fracture mechanics and methods to determine the crack growth rate for a material and loading condition experimentally. It also addresses the two most important aspects of crack-growth modeling: loading environment and crack geometry.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003445
EISBN: 978-1-62708-195-5
... not experience repeated loads that approach their ultimate loads, composite structures are not fatigue critical. Even if they were to experience loads near this threshold, or slightly above, there are so few of these high cycles in the spectrum life of the vehicle that no significant fatigue damage would occur...
Abstract
This article describes the role of the full-scale testing in assessing composite structural systems of aircraft and qualifying them for in-service use. The typical full-scale tests include static, durability, and damage tolerance. The article discusses the parameters to be considered when developing the basic requirements for the static test. These parameters consist of material considerations, moisture and temperature effects, structure size, load application alternatives, instrumentation requirements, test procedure considerations, ultimate load requirements, and test results correlation. The basic requirements common for durability and damage tolerance tests, including environmental effects and inspection requirements, are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... to accurately predict component life. The first spectra were all block type. It should be noted that the most simplistic block spectrum would have all cycles at a single stress. More complex block spectra would have several different stresses with many cycles at each of the stresses. These block spectra may...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006877
EISBN: 978-1-62708-387-4
... small fatigue cracks less than approximately 0.5 mm (0.02 in.) in size can grow faster than predicted from long crack-growth data, the crack-growth rates are generally low. Also, because most of the fatigue life is spent in developing and growing small cracks, their study often requires detailed...
Abstract
This article discusses several examples of fatigue load histories that intentionally create artificial fracture-surface markings during testing such that they are measurable by post-test quantitative fractography (QF). It reviews a number of methods for providing fatigue fracture-surface markers to aid QF of fatigue crack growth (FCG). These methods are based on load changes, including reordering the basic load histories and/or adding loads to them. The article also provides some guidelines for obtaining recognizable FCG markers for a variety of load histories and crack-growth regimes for coupons, components, and, particularly, full-scale fatigue tests.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
.... The traditional approach to fatigue design with ferrous alloys, based on endurance limits and infinite life criterion, has been supplanted by approaches based on finite-life behavior that emphasize the cyclic deformation aspects of the fatigue process ( Ref 4 , 5 ). Central to these approaches for predicting...
Abstract
This article reviews general trends in the cyclic response for representative commercial alloys to establish the spectrum of cyclic properties attainable through microstructural alteration. Individual alloy classes are examined in detail to assess the understanding of relationships between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... of the structural integrity program were to control structural failure of operational aircraft, to determine methods of accurately predicting aircraft service life, and to provide a design and test approach that would avoid structural fatigue problems in future weapon systems. The original ASIP used...
Abstract
The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... has elapsed. Calculations predict life exhaustion. Service time has reached some arbitrarily chosen fraction of calculated or experimental failure life. Previous failure statistics indicate high probability of failure. Frequency of repair renders continued operation uneconomical...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... elapsed. Calculations predict life exhaustion. Service time has reached some arbitrarily chosen fraction of calculated or experimental failure life. Previous failure statistics indicate high probability of failure. Frequency of repair renders continued operation uneconomical. Nondestructive...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
... of a notched component. Both ASTM International and SAE International have recommended procedures and practices for conducting strain-controlled tests and using these data to predict fatigue lives ( Ref 31 – 35 ). Fatigue-life predictions may be made using the strain-life approach based on information...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001038
EISBN: 978-1-62708-161-0
... ultimate load carrying ability. Processing, fabrication, heat treatment, surface treatments, finishing, and service environments significantly influence the ultimate behavior of a metal subjected to cyclic stressing. Predicting the fatigue life of a metal part is complicated because materials...
Abstract
The process of fatigue failure consists of three stages: initial fatigue damage leading to crack initiation; crack propagation to some critical size; and final, sudden fracture of the remaining cross section. Variations in mechanical properties, composition, microstructure, and macrostructure, along with their subsequent effects on fatigue life, have been studied extensively to aid in the appropriate selection of steel to meet specific end-use requirements. The metallurgical variables having the most pronounced effects on the fatigue behavior of carbon and low-alloy steels are strength, ductility, cleanliness, residual stresses, surface conditions, and aggressive environments. The article discusses the stress-based and strain-based approach to fatigue. The application of fatigue data in engineering design is complicated by the characteristic scatter of fatigue data; variations in surface conditions of actual parts; variations in manufacturing processes such as bending, forming, and welding; and the uncertainty of environmental and loading conditions in service.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... to conditions harsher than those that would be experienced in normal service. While the life expectancies of products in nondemanding applications have traditionally been predicted from previous in-service experience (i.e., service conditions considered identical or similar to those for which data already exist...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... degrade over time, and that degradation can eventually result in failure. One of the mechanisms by which this process occurs, fatigue, is the initiation and growth of cracks. Fatigue is a primary cause of failure in aircraft structures. For this reason, a reliable prediction of component fatigue life...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
..., and so on. Hence, knowing the initial aspect ratio, a 0 / c 0 , of these defects, the aspect ratio at any stage in fatigue life can be determined numerically from Eq 3 and 5 . This is of considerable use in predictions of fatigue failure. The nature of development of crack shape or aspect ratio...
Abstract
This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual stresses, texture, loading mode, environment, and crack coalescence. Measurement of crack shapes or aspect ratios during fatigue crack growth can be performed by a number of techniques. The article describes the estimation of the stress-intensity factor for arbitrarily-shaped cracks and failure prediction methods for arbitrarily-shaped flaws.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed. reliability aging full-scale structural testing corrosion maintenance service life...
Abstract
Aging is a process where the structural and/or functional integrity of components will be continuously degraded by exposure to the environmental conditions under which they are operated. This article discusses aging mechanisms in various components of military systems such as structural parts, engines, and subsystems. It describes the aging management processes such as full-scale structural testing and practical life-enhancement methods. The article reviews control and prevention systems such as usage and health monitoring systems necessary to provide effective corrosion maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed.
1