Skip Nav Destination
Close Modal
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
Search Results for
spectrophotometry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
spectrophotometry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Image
Published: 01 November 1995
Fig. 4 Typical configuration for the inductively coupling radio frequency method of plasma-emission spectrophotometry
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
... information on how to set up and run a variety of UV/VIS absorption tests. chemical analysis composition concentration profiles sample preparation spectrophotometry surface characterization trace element concentrations ultraviolet/visible absorption spectroscopy Overview Introduction...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
..., such as inductively coupled plasma mass spectrometry (ICP-MS), nuclear magnetic resonance (NMR), electron paramagnetic resonance, ultraviolet/visible spectrophotometry, liquid chromatography, and many other techniques. Due to the myriad applications that use these materials, organic liquids can be relatively...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001730
EISBN: 978-1-62708-178-8
... When the sensitivity figures listed in Fig. 3 are combined with the dilution factor estimates of Table 1 to estimate molar extinction coefficients of gas phase atoms, figures of approximately 10 8 (in the usual units of liters per mole per centimeter) are typical. In conventional spectrophotometry...
Abstract
Atomic absorption spectrometry (AAS) is generally used for measuring relatively low concentrations of approximately 70 metallic or semimetallic elements in solution samples. This article describes several features that are common to three techniques, namely, AAS, atomic emission spectrometry (AES), and atomic fluorescence spectrometry (AFS). It discusses the reasons for the extreme differences in AAS sensitivities that affect AFS and AES. The article provides information on the advantages and disadvantages of the Smith/Hieftje system and two types of background correction systems, namely, the continuum-source background correction and Zeeman background correction. It also provides a list of applications of conventional AAS equipment, which includes most of the types of samples brought to laboratories for elemental analyses.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006634
EISBN: 978-1-62708-213-6
..., there are some limited, published response factor data that can be used in an approximate way to standardize the response from these devices ( Ref 10 ). In Situ Standardization While it is rare that an analytical method can be calibrated by use of a single solution, some instances of spectrophotometry...
Abstract
Most modern instrumental techniques produce an output or signal that is not absolute. To obtain quantitative information, the raw output from an instrument must be converted into a physical quantity. This is done by standardizing or calibrating the raw response from an instrument and subsequently analyzing the uncertainty from both the calibration process and the measurement process. This article briefly summarizes the most common calibration and uncertainty analysis methods, namely external standard methods, abbreviated external standard methods, internal normalization, internal standard, standard addition, and serial dilution methods. In addition, it includes information on the traceability of true value of a measured quantity.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006666
EISBN: 978-1-62708-213-6
..., such as nitrates, sulfates, organic species, and lead, were studied using AA spectrophotometry. Sampling was performed using high-volume samplers that delivered a 20 by 25 cm (8 by 10 in.) sheet of fiberglass filter material for analysis. The complexity of the problem rendered such techniques as NAA and XRF...
Abstract
This article provides a detailed account of particle-induced x-ray emission (PIXE), covering the basic principles of PIXE analysis and calibration and quality-assurance protocols employed. A comparative study on PIXE and x-ray fluorescence is then presented. The article also discusses the applications of PIXE in atmospheric physics and chemistry, external proton milliprobes and historical analysis, and PIXE microprobes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001739
EISBN: 978-1-62708-178-8
Abstract
This article provides information on basic chemical equilibria, wet analytical chemistry, and the appropriateness of classical wet methods. It focuses on nonoxidizing acids and oxidizing acids. The article includes information on the qualitative methods used to identify materials by wet chemical reaction. Gravimetry, in which a chemical species is weighed; titrimetry, which involves volume measurement of a liquid reactant; and a host of separation techniques, which require diverse forms of laboratory manipulation, are discussed. The article briefly describes the partitioning of oxidation states as well as those applications in surface studies and rapid material identification in which chemical techniques have proved useful.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001734
EISBN: 978-1-62708-178-8
...), and a few chemical compounds, such as nitrates, sulfates, organic species, and lead, were studied using AA spectrophotometry. Sampling was performed using high-volume samplers (Hi-Vols) that delivered a 20- by 25-cm (8- by 10-in.) sheet of fiberglass filter material for analysis. The complexity...
Abstract
Particle-induced x-ray emission (PIXE) is one of several quantitative analyses based on characteristic x-rays. This article provides a detailed account on the principles of PIXE, discussing the data-reduction codes used to identify, integrate, and reduce x-ray peaks into elemental concentrations. It provides information on the calibration of PIXE analysis, which is mostly performed using gravimetric standards to avoid serious absorption, refluorescence, or ion energy change corrections. A comparative study on PIXE and x-ray fluorescence is also included. Finally, the article discusses the applications of PIXE in three areas, namely, atmospheric physics and chemistry, external proton milliprobes and historical analysis, and PIXE microprobes.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006629
EISBN: 978-1-62708-213-6
Abstract
This article focuses on wet chemical methods that have stood the test of time in laboratories around the world. It begins with a description of the appropriateness of classical wet methods. This is followed by sections on sampling procedures, basic chemical equilibria, and wet analytical chemistry. Mechanical methods and nonoxidizing acids and/or acid mixtures for dissolving solid samples for wet chemical analysis are then reviewed. Qualitative methods that are used to identify materials by wet chemical reaction are also included. The article provides information on various methods for the separation of chemical mixtures and on the types of gravimetry and titrimetry. Strategies for removing inclusions are also included to aid in their compositional understanding. The article also briefly describes the processes involved in chemical surface studies and partitioning of oxidation states. It ends by presenting some examples of the applications of classical wet methods.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001742
EISBN: 978-1-62708-178-8
... of metals in alloys determination of metal ions Precision analysis of metallurgical products and Coulometric titrations: Applicable for all volumetric samples reactions Quantitative measurement of microgram amounts Atomic absorption spectrophotometry: Quantitative of metals and qualitative...
Abstract
Electrogravimetry is the oldest electroanalytical technique in which the element of interest is deposited electrolytically onto an electrode and weighed. This article discusses the principles involved in determining the electrolysis rate of the solution, and describes different methods for the separation of ion in the electrolyte and their corresponding instrumentation. Furthermore, it explores the various types of analysis, such as the separation and quantitative determination of metal ions and internal electrolysis, and provides a detailed account of the applications of electrogravimetry with examples.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
..., serum, urine, saliva Western blot, colorimetry, spectrophotometry F2-isoprostanes Plasma, urine High-performance liquid chromatography–mass spectrometry (HPLC-MS), gas chromatography–mass spectrometry (GS-MS) Oxidized low-density proteins Plasma, serum Elisa DNA 8-hydroxy-2...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
...) spectroscopy. This is a nondestructive and automatable approach, but it must be calibrated using Calotest or SEM measurements. Fig. 2 Calotest coating thickness test schematic Diamondlike carbon coating color on smooth flat surfaces can be measured using color spectrophotometry...
Abstract
This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation for DLC and diamond deposition. It also provides a discussion on the coating composition and structure, mechanical and tribological properties, and applications of DLC and diamond coatings. The quality control techniques for DLC and diamond coatings are specified to meet customer requirements and ensure repeatable quality.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006638
EISBN: 978-1-62708-213-6
Abstract
This article is a detailed account of the principles of electron-excited X-ray microanalysis. It begins by discussing the physical basis of electron-excited X-ray microanalysis and the advantages and limitations of energy dispersive spectrometry (EDS) and wavelength dispersive spectrometry for electron probe microanalysis. Key concepts for performing qualitative analysis and quantitative analysis by electron-excited X-ray spectrometry are then presented. Several sources that lead to measurement uncertainties in the k-ratio/matrix corrections protocol are provided, along with the significance of the raw analytical total. Sections on accuracy of the standards-based k-ratio/matrix corrections protocol with EDS and processes of analysis when severe peak overlap occurs are also included. The article provides information on low-atomic-number elements, iterative qualitative-quantitative analysis for complex compositions, and significance of standardless analysis in the EDS software. It ends with a section on the processes involved in elemental mapping for major and minor constituents.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... of fluorescence intensity on the concentration of the emitter(s), fluorescence detection limits are on the order of nanomolar to picomolar for efficient fluorescers. This is at least 10 3 -fold lower than the micromolar limits obtained using UV/VIS absorption spectrophotometry, in which absorbance, derived from...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
Abstract
This article describes various methods of electrochemical analysis, namely coulometry, electrogravimetry, voltammetry, electrometric titration, and nanometer electrochemistry. The discussion covers the general uses, sample requirements, application examples, advantages, and limitations of these methods. Some of the factors pertinent to electrochemical cells are also provided. In addition, the article provides information on various potentiometric membrane electrodes used to quantify numerous ionic and nonionic species.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
1