Skip Nav Destination
Close Modal
Search Results for
specimen preparation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 289 Search Results for
specimen preparation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... orientations, and it produces a rough appearance in originally smoothly machined specimens. A macro ductile tensile fracture is of cup-and-cone shape. Fig. 4 Stainless steel bolt before and after tensile test, just before final failure Ductile dimples, or microvoid coalescence, are exhibited by a...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006674
EISBN: 978-1-62708-213-6
.... The discussion covers the general principles, equipment used, specimen preparation process, calibration conditions, data analysis steps, and examples of the applications and interpretation of TMA. Thermomechanical analysis Thermomechanical analysis (TMA) is a thermal...
Abstract
Thermomechanical analysis (TMA) is a thermal analysis technique in which the length of a specimen is precisely measured versus temperature and time as the specimen is subjected to controlled heating and cooling. This article discusses the various factors and processes involved in TMA. The discussion covers the general principles, equipment used, specimen preparation process, calibration conditions, data analysis steps, and examples of the applications and interpretation of TMA.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006672
EISBN: 978-1-62708-213-6
... Abstract Differential scanning calorimetry (DSC) is the most common thermal technique for polymer characterization. This article provides a detailed account of the various factors and processes involved in DSC. The discussion covers the equipment used, specimen preparation process, calibration...
Abstract
Differential scanning calorimetry (DSC) is the most common thermal technique for polymer characterization. This article provides a detailed account of the various factors and processes involved in DSC. The discussion covers the equipment used, specimen preparation process, calibration requirements, data analysis, and provides examples of the applications and interpretation of DSC.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006673
EISBN: 978-1-62708-213-6
... various criteria to be considered for specimen preparation and calibration of TGAs. The use of thermogravimetric analysis data in the assessment of failure analysis of plastics and the combined usage of TGA with other techniques to understand the changes in the sample are also covered. The article...
Abstract
Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere. This article provides a detailed account of the concepts of TGA, covering the various criteria to be considered for specimen preparation and calibration of TGAs. The use of thermogravimetric analysis data in the assessment of failure analysis of plastics and the combined usage of TGA with other techniques to understand the changes in the sample are also covered. The article provides examples of applications and provides information on the interpretation of TGA.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... Abstract This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the...
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006661
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the principles and applications of thermal desorption spectroscopy (TDS) use to study adsorption, desorption, and reaction of adsorbed atoms and molecules on surfaces. The discussion provides information on various components of and specimen preparation...
Abstract
This article focuses on the principles and applications of thermal desorption spectroscopy (TDS) use to study adsorption, desorption, and reaction of adsorbed atoms and molecules on surfaces. The discussion provides information on various components of and specimen preparation processes for a TDS experiment. The factors that must be considered when performing TPD experiments and several methods of analyzing TPD data are covered. A few studies where TPD was used to elucidate surface reactions that impact the tribological performances of materials are also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006676
EISBN: 978-1-62708-213-6
... involved in preparation of test specimen for DMA measurements. Some factors to be considered when calibrating the DMA instrument are provided, along with a description on processes for interpreting the temperature and frequency dependence of DMA curves as well as the applications of DMA. dynamic...
Abstract
Dynamic mechanical analysis (DMA) is a powerful tool for studying the viscoelastic properties and behavior of a range of materials as a function of time, temperature, and frequency. This article describes various systems and equipment used in DMA setup and discusses the processes involved in preparation of test specimen for DMA measurements. Some factors to be considered when calibrating the DMA instrument are provided, along with a description on processes for interpreting the temperature and frequency dependence of DMA curves as well as the applications of DMA.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
... specimen preparation. In this case, electron-transparent coupons 20 by 10 μm 2 are fabricated using the FIB and are mounted on a half-cut grid, as shown in Fig. 5(c) . More details about the FIB can be found elsewhere in this Volume. Fig. 5 (a) Typical transmission electron microscopy (TEM...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
.... Scanning electron microscopy is amenable to a broad array of samples, but there are some limitations. Conventionally, samples should be electrically grounded to the holder and SEM stage. As such, solid specimens that are electrically conductive require no sample preparation. Nonconductive solids can be...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006645
EISBN: 978-1-62708-213-6
... the peaks for Zn Kα and Cu Kβ, or completely unresolved, such as those for Mn Kα and Ba Lα 2,3 . The superior resolution of the WDS often makes it the spectrometer of choice for the heavier elements in a specimen (atomic number Z > 20), because they produce L- or M-family x-rays, which will often...
Abstract
This article provides a detailed account of X-ray spectroscopy used for elemental identification and determination. It begins with an overview of the operating principles of X-ray fluorescence (XRF) spectrometer, as well as a comparison of the operating principles of wavelength-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... weathered copper leaf (width: 4 cm, or 1.6 in.) exhibiting patina. Republished from Ref 3 with permission of Canadian Science Publishing (CSP); permission conveyed through Copyright Clearance Center, Inc. In preparing a powder specimen for μXRD analysis, it is important to remember that with a...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006658
EISBN: 978-1-62708-213-6
... instrumentation capable of measuring nanoscale spectroscopic and thus chemical maps (see the section “Measuring Chemical Composition at the Nanoscale Level” in this article). The probe in an AFM can modify the surface of a specimen. There are several options for AFM lithography: The probe can...
Abstract
This article focuses on laboratory atomic force microscopes (AFMs) used in ambient air and liquid environments. It begins with a discussion on the origin of AFM and development trends occurring in AFM. This is followed by a section on the general principles of AFM and a comprehensive list of AFM scanning modes. There is a brief description of how each mode works and what types of applications can be made with each mode. Some of the processes involved in preparation of samples (bulk materials and those placed on a substrate) scanned in an AFM are then presented. The article provides information on the factors applicable to the accuracy and precision of AFM measurements. It ends by discussing the applications for AFMs in the fields of science, technology, and engineering.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... diffraction crystallographic texture AUTOMATED ELECTRON BACKSCATTER DIFFRACTION (EBSD) is a technique that allows the crystallography of a sample to be determined in a suitably equipped scanning electron microscope (SEM). In brief, a prepared specimen that is flat and free from...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... care as this step introduces the greatest amount of damage in the preparation sequence. Every step must be performed properly because the removal rate of the next step may not be adequate to remove the damage from the previous step. You cannot interpret what you cannot see. Details of specimen...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... solution for analysis) is often diluted in water to obtain a final specimen suitable for analysis ( Ref 2 ). The ICP-OES technique exhibits the unique properties of providing simultaneous multielement (up to 70) analysis within a few minutes, as well as ensuring over 6 orders of magnitude dynamic range...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.