Skip Nav Destination
Close Modal
By
Joseph R. Michael
By
Scott McClain, Claudia Kropas-Hughes
By
Ragnvald H. Mathiesen, Lars Arnberg
By
Lisa Swartz, John Newman
By
S. Hofmann
Search Results for
spatial resolution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 266
Search Results for spatial resolution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 09 June 2014
Image
The same image stored with decreasing spatial resolution. Image sizes, in p...
Available to PurchasePublished: 01 December 2004
Fig. 7 The same image stored with decreasing spatial resolution. Image sizes, in pixels, are (a) 560 × 560, (b) 280 × 280, (c) 140 × 140, and (d) 70 × 70. 150×
More
Image
Spatial resolution dependence of an image-intensifier system as a function ...
Available to Purchase
in Digital Imaging–Real-Time, Computed, and Digital Radiography[1]
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Fig. 4 Spatial resolution dependence of an image-intensifier system as a function of radiation intensity at the entrance screen. A, image-converter resolution; B, 625 TV lines limit; C, combined resolution of image converter and TV line
More
Image
(a) Basic spatial resolution from a detector with 127 μm pixel pitch. (b) S...
Available to PurchasePublished: 01 August 2018
Fig. 36 (a) Basic spatial resolution from a detector with 127 μm pixel pitch. (b) Superresolution using four images from the same detector. Superresolution improved the spatial resolution by a factor of 2 in both dimensions of the image.
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
..., namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
... information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe. electron probe microanalysis scanning auger microprobe scanning electron microscopy...
Abstract
This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. It provides information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe.
Book Chapter
Crystallographic Analysis by Electron Backscatter Diffraction in the Scanning Electron Microscope
Available to PurchaseSeries: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Book Chapter
Digital Imaging–Real-Time, Computed, and Digital Radiography
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006459
EISBN: 978-1-62708-190-0
... but is confined to the needle in a direction parallel to the incident radiation. Therefore, the thickness of the conversion screen does not cause appreciable deterioration in the spatial resolution of the system. Fig. 3 Schematic of a typical radioscopic system using an x-ray image intensifier...
Abstract
Digital radiography is a technique that uses digital detector arrays (linear or area) to capture an X-ray photonic signal and convert it to an electronic signal for display on a computer. This article begins with an overview of real-time radiography and provides a schematic illustration of a typical radioscopic system using an X-ray image intensifier. It discusses the advantages and limitations of real-time radiography. Computed radiography (CR) is one of the radiography techniques that utilizes a reusable detector comprised of photostimuable luminescence (PSL) storage phosphor. The article provides a schematic illustration of a typical storage phosphor imaging plate. It concludes with a discussion on the benefits of digital radiography.
Image
X-ray generation volume in thin TEM samples. Note that the thin sample resu...
Available to PurchasePublished: 01 December 1998
Fig. 21 X-ray generation volume in thin TEM samples. Note that the thin sample results in reduced spreading of the incident electron beam, thus reducing the diameter of the x-ray generation region and providing better spatial resolution for elemental microanalysis than is possible with typical
More
Image
Published: 01 December 2004
of the probe beam determine the spatial resolution in the reconstructed image. Adapted from Ref 61
More
Image
Zinc distribution in a SiC shell after reconstruction from x-ray microfluor...
Available to PurchasePublished: 01 December 2004
Fig. 42 Zinc distribution in a SiC shell after reconstruction from x-ray microfluorescence data. The spatial resolution was limited because available counting time restricted the number of steps. Source: Adapted from M. Naghedolfeizi et al., X-Ray Fluorescence Microtomography Study of Trace
More
Image
Zinc distribution in a SiC shell after reconstruction from x-ray microfluor...
Available to PurchasePublished: 01 December 2004
Fig. 43 Zinc distribution in a SiC shell after reconstruction from x-ray microfluorescence data. The spatial resolution was limited because available counting time restricted the number of steps. Source: Adapted from M. Naghedolfeizi et al., X-Ray Fluorescence Microtomography Study of Trace
More
Image
(a) The Ewald construction describes Bragg’s law in reciprocal space. For a...
Available to PurchasePublished: 15 December 2019
. Data collected at the TOPAZ diffractometer at the Spallation Neutron Source. The large number of reflections observed is a result of the extensive simultaneous sampling of reciprocal space in both angle and wavelength. Note the spatial resolution required for peak integration. (See the section
More
Book Chapter
X-Ray Imaging of Solidification Processes and Microstructure Evolution
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005218
EISBN: 978-1-62708-187-0
... by only 10 −5 or less. However, provided that phase contrast could be used, it would help to resolve phases with similar atomic compositions but adequate differences in density. Current state-of-the-art x-ray imaging detectors operate with limiting spatial resolutions similar to optical microscopes...
Abstract
Metal transparency and interaction with X-rays have been recognized as obvious candidate principles from which methods for in situ monitoring of solidification processes could be developed. This article describes the use of X-ray imaging-based techniques to investigate interface morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
... Technique Property Advantages Limitations Light microscopy Physical morphology True color, ambient conditions, few sample limitations Limited magnification, low depth of field Scanning electron microscopy Physical morphology Spatial resolution, rapid data collection Potentially destructive...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Book Chapter
Chemical Characterization of Surfaces
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... Electrons Ions Average sampling depth 5 nm 5 nm 2 nm Typical detection limits 10 −3 10 −3 10 −6 Spatial resolution 0.005 μm 5–10 μm 0.05 μm Information Elemental, some chemical secondary-electron microscopyphotos Elemental, chemical Elemental, molecular Strengths Ultimate...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
... requirements in terms of accuracy and spatial resolution and moreover require more powerful sources and advanced technologies to inspect large objects and materials with high atomic numbers. In clinical CT, which can be considered the precursor of iCT, the patient remains generally stationary, or at least...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... Probe beam Electrons X-ray photons Ions Analyzed beam Electrons Electrons Ions Average sampling depth 5 nm 5 nm 2 nm Detection limits 10 −3 10 −4 10 −6 Spatial resolution 10 nm 5–10 μm 150 nm Information Mostly elemental, SEM photos Elemental, chemical Elemental...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Book Chapter
Visual Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003230
EISBN: 978-1-62708-199-3
... images having spatial resolutions of the order of those described in Fig. 3 . Resolution depends on the object-to-lens distance and the fields of view, factors that affect the degree of magnification. Generally, videoscopes produce higher resolution than fiberscopes. Fig. 3 Typical resolution...
Abstract
Visual inspection is a nondestructive testing technique that provides a means to detect and examine a variety of surface flaws, such as corrosion, contamination, surface finish, and surface discontinuities. This article discusses the equipment used to aid visual inspection, including borescopes (rigid and flexible), optical sensors, and magnifying systems. The article discusses the special features of borescopes, the factors that influence the choice of a flexible or rigid borescope for use in a specific application, and some of the image sensors used in visual inspection.
Book Chapter
Surface and Interface Analysis of Coatings and Thin Films
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
..., and scanning tunneling microscopy) and stereochemistry (infrared and Raman spectroscopy). Recent trends are the development of increased spatial resolution (e.g., toward the 10 nm region and below in AES and SIMS) and improved databases and evaluation software for quantitative analysis. With the exception...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
1