1-20 of 232 Search Results for

spatial correlations

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003759
EISBN: 978-1-62708-177-1
... of microstructural features; derived microstructural properties; feature specific size, shape, and orientation distributions; and descriptors of microstructural spatial clustering and correlations. It emphasizes on the practical aspects of the measurement techniques and applications. The article also provides...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
... scattering (SAS) has been used to study and distinguish between the different mechanisms of phase separation (spinodal versus nucleation) and to evaluate long-range periodic order, voiding, random spatial correlations, internal surface area, orientation, deformation, molecular configuration, the effects...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... the volume of a loaded polycrystalline aggregate. The ability of crystal to carry load depends on the spatial orientation of its lattice, so in an aggregate of crystals displaying a range of orientations, there exists a range of properties in relation to the load. Finite-element formulations offer a powerful...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
... of interceptions of a feature per unit length of test line; L A ′ : the length of linear features per unit area of the test plane Stereological relationships between spatial features and their projected images Table 2 Stereological relationships between spatial features and their projected...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
... crystallite lattice orientations occur with equal frequency and without spatial correlation, the properties of a polycrystalline material can be quite isotropic, on the average. Figure 1(a) shows a two-dimensional depiction of a polycrystalline material with cubes representing unit cells of the crystallite...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
.... In this regard, CA simulations reveal little more about the process of recrystallization than was known 70 years ago. The power of the approach is that the local spatial evolution can be coupled with the temporal evolution, but to include the spatial component, the CA needs experimental data. There are four...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005426
EISBN: 978-1-62708-196-2
... be approximated as spatially one- or two-dimensional; the time and expense of performing three-dimensional calculations remained prohibitive. Over the last 30 years, however, CFD calculations of three-dimensional flows have become more common. This has heightened enormously the interest in CFD among engineers...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... as the arc power (that is, the product of the voltage drop across the arc and the arc current) and the arc transfer efficiency, which account for energy losses from the arc. Estimates of arc efficiency can be made by conducting calorimetry measurements, correlating computed temperatures with thermocouple...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... include time, t , as the variable. Total Energy Functional and Variation A field description of microstructure involves a large number of variables (one or several for each spatial coordinate, r , with each one regarded as a degree of freedom). An effective way to formulate their time evolution...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002444
EISBN: 978-1-62708-194-8
... and reliability of modern nuclear weapons remains a major impetus for the development of more powerful computers and more efficient numerical techniques for solving the fluid-flow equations ( Ref 6 ). Initially, most numerical solutions were limited to flows that could be approximated as spatially one- or two...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... accounts for energy losses from the arc. Estimates of arc efficiency can be made by correlating computed temperatures with thermocouple readings from test welds, making calorimeter measurements for a specific set of welding conditions, or utilizing some other observable response to the welding thermal...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... it is the power density that determines the depth of penetration and joining rate for the process, not the total power of the source. Therefore, beam diameter and spatial distribution of the laser-beam energy play an extremely important role because they determine the area of incidence. Two other variables...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... 81 Fig. 22 Final microstructure obtained from initially (a) randomly and (b) uniformly distributed precipitates and (c) the corresponding growth kinetics showing the effect of particle spatial and size distribution on growth kinetics ( Ref 88 ). Source: Ref 37 Fig. 24 Example...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006452
EISBN: 978-1-62708-190-0
... to determine the spatial scale of images. Gradually, array systems customized for NDE appeared and, in common with their medical counterparts, became increasingly digital. However, until the early 2000s, both medical and NDE systems remained based on the underlying paradigm of emulating operations that could...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005524
EISBN: 978-1-62708-197-9
... and Methodologies Modeling of Heat Transfer during Welding Heat transfer in welding can be represented by equations of heat conduction in solids. For example, the spatial variation of the heating or cooling rate in a Cartesian coordinate can be related to the second derivative of the temperature gradients...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
.... This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
... in thickness. Multiple-layer thin films with spatially periodic compositional microstructures of the type shown in Fig. 1 are sometimes referred to in the literature as composition-modulated alloys (CMAs) or as superlattice alloys. A wide variety of binary and ternary alloy systems have been electroplated...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005429
EISBN: 978-1-62708-196-2
..., the calculations can quickly become very computationally challenging, with increasing system size and complexity. Practical application of electronic structure methods invariably includes chemical, spatial, or temporal approximations that n curtail a faithful representation of the actual materials problem. However...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001772
EISBN: 978-1-62708-178-8
..., instrument design and operation, mass spectra and their interpretation, and applications of AP microanalysis. electric field field ion microscopy field ionization point defects quantitative analysis sample preparation semiconductors spatial resolution stress time-of-flight mass spectrometry...