Skip Nav Destination
Close Modal
Search Results for
spall-resistant metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 319 Search Results for
spall-resistant metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
.... The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications. fractography...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
...-carbide, silicon-nitride, or boron-nitride. Refractories and structural ceramics are generally thought to be inert and corrosion resistant (as compared to metallic alloys), and they are, relatively so, at room temperature, under dry atmosphere, and over long time intervals. With increasing...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002373
EISBN: 978-1-62708-193-1
.... The article concludes with information on various approaches that improve the contact fatigue resistance of rolling contact systems. ball bearings contact fatigue contact fatigue resistance roller bearings rolling contact bearing-life test rolling contact system statistical analysis CONTACT...
Abstract
Contact fatigue is a surface-pitting-type failure commonly found in ball or roller bearings. This article discusses the mechanisms of contact fatigue found in gears, cams, valves, rails, and gear couplings. It discusses the statistical analysis of rolling contact bearing-life tests. The article concludes with information on various approaches that improve the contact fatigue resistance of rolling contact systems.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006528
EISBN: 978-1-62708-207-5
... enameling process, the composition of frits, and the preparation of coating substrates. It also provides information on chemical, mechanical, and electrical properties and sheds light on process consistency and quality control. chemical resistance firing temperature glass coating metal-oxide frits...
Abstract
Porcelain enamel is a fusion bonded glass coating that resists chemical and abrasive attack, provides thermal and electrical insulation, and improves aesthetic qualities. It is used on cast iron as well as steel and aluminum alloys. This article provides a review of the porcelain enameling process, the composition of frits, and the preparation of coating substrates. It also provides information on chemical, mechanical, and electrical properties and sheds light on process consistency and quality control.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003683
EISBN: 978-1-62708-182-5
... of the base metal, faulty application, or unsatisfactory firing procedures. The most common test for spall resistance is ASTM C 703. Thickness A number of specifications for products and applications require a specific thickness for porcelain-enamel coating. The procedure used to measure the thickness...
Abstract
Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, or aluminum to improve appearance and to protect the metal surface. This article provides information on the types and properties of the porcelain enamels and frits for porcelain enameling. It describes the corrosion resistance of the porcelain enamels in a variety of environments. Evaluation of properties of the porcelain-enameled products to control specifications and quality of porcelain-enamel coatings is also reviewed. The article contains a table that lists the specific test methods for evaluating various properties of porcelain enamels.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
..., a guide roller in a hot metal bar-handling system may sustain considerable RCW, but this wear may be unimportant as long as the component continues to function adequately. In the case of ultraprecision ball bearings for missile guidance systems, however, a very small spall may cause the center of mass...
Abstract
This article discusses the physical signs of rolling-contact wear (RCW). It lists the major considerations in gear design and describes the mechanisms of RCW. The article provides a guide to rolling-contact fatigue (RCF) testing methods. It explains the steps involved in the processes of RCF and RCW.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
.... The process typically involves heating metal components to temperatures of 700 to 1000 °C (1300 to 1830 °F) for 1 to 12 h, in contact with a boronaceous solid powder, paste, liquid, or gaseous medium. This allows boron to diffuse into metal surfaces and form hard, wear-resistant metal-boride compound layers...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
... Abstract Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes...
Abstract
Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling resistance of borided surfaces. It concludes with a discussion on boronizing plus physical vapor deposition (PVD) overlay coating.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... process, or the operation of the engines at too high of a temperature. Sometimes it is a problem because the base metal or coating selected has insufficient oxidation resistance. High-temperature oxidation can usually be controlled by the use of base metals having sufficient oxidation resistance...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003841
EISBN: 978-1-62708-183-2
... decarburization vessel. After secondary refining, the molten metal is transported to a tundish for casting. Each furnace is lined with refractory materials. Usually, a practice called zoning is used, where refractories with different properties are used in different areas of the same vessel to resist...
Abstract
This article provides an overview of the corrosion theory relating to refractories on the basis of acid/base reactions, thermodynamics, and kinetic considerations. The tests to evaluate refractory corrosive wear are reviewed. The article describes the specific refractories used in steel, glass, aluminum, and chemical-resistant applications. Specific material issues that should be considered or evaluated when choosing or using refractory materials are discussed.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005179
EISBN: 978-1-62708-186-3
..., and the punch could be of a material less wear resistant than tool steel, for example, low-cost alloy cast iron. Effect of Sheet Thickness Thick sheets of any metal will exert greater pressure on the dies than thin sheets of the same metal. Therefore, the effect of galling and wear increases as parts...
Abstract
This article introduces process factors that influence die wear and lubrication for metal forming operations such as bending, spinning, stretching, deep drawing, and ironing. It discusses the effects of part shape, sheet thickness, tolerance requirements, sheet metal, and lubrication on shallow forming dies. The article describes the wear of material for dies to draw round and square cup-shaped metal parts in a press. It also discusses the effect of process conditions on the shallow forming dies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... 58 HRC, resistance to pitting fatigue is reduced, and the possibility of brinelling (denting) of bearing raceways is increased. Because hardness decreases with increasing operating temperature, the conventional materials for ball and roller bearings can be used only to temperatures of approximately...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
... temperature Good adherence to the metal substrate, which usually involves a coefficient of thermal expansion close to that of the metal, and sufficient high-temperature plasticity to resist fracture from differential thermal expansion stresses that can result particularly from thermal cycling High...
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling...
Abstract
Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads on ceramic balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling fatigue failure, the delamination failure, and the rolling-contact wear.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... showing the advantage of careful control of heat treatment ( Ref 3 ). Spalling resistance could be maximized by either high-temperature tempering or austenitizing and tempering. Microstructure of High-Chromium White Irons Optimum Metallic Matrix To a large extent the metal matrix in high...
Abstract
High-alloyed white cast irons are an important group of materials whose production must be considered separately from that of ordinary types of cast irons. The metallic matrix supporting the carbide phase in the high-alloy white cast irons can be adjusted by alloy content and heat treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high-chromium white irons.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002473
EISBN: 978-1-62708-194-8
... engine applications. It discusses the general methodologies used to evaluate oxidation resistance of materials. The article describes the performance characteristics of superalloys, single-crystal superalloys, and other high-temperature materials such as refractory metals and ceramics. It discusses hot...
Abstract
Alloys intended for use in high-temperature environments rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation, and hot corrosion resistance. This article focuses on the issues related to high-temperature oxidation of superalloys used in gas turbine engine applications. It discusses the general methodologies used to evaluate oxidation resistance of materials. The article describes the performance characteristics of superalloys, single-crystal superalloys, and other high-temperature materials such as refractory metals and ceramics. It discusses hot corrosion of superalloys and airfoil degradation due to deposits resulting from ingested particles or sand. The article concludes with a discussion on the limitations of testing techniques and life prediction.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... of spalling of high-chromium white cast irons provided data showing the advantage of careful control of heat treatment ( Ref 4 ). Spalling resistance could be maximized by either high-temperature tempering or austenitizing and tempering. Microstructure of High-Chromium White Irons Optimal Metallic Matrix...
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002401
EISBN: 978-1-62708-193-1
... that of 52100 steel. Materials for Sliding Bearings Almost all materials, such as carbon, ceramics, white cast iron, and metal alloys of all kinds, can be used as bearings. These materials may be chosen primarily for corrosion resistance, for prevention of sparking, for resistance to high volumes...
Abstract
The mechanism of contact fatigue can be understood in terms of several sources of stress concentration, or stress raisers, within the macroscopic Hertzian stress field. This article focuses primarily on rolling contact fatigue of hardened bearing steels. It discusses Hertzian shear stresses at and below the contact surfaces and briefly summarizes bearings and gear characteristics. The article provides an overview of the key types of gear and bearing steels. It analyzes two types of macropitting that result from the subsurface growth of fatigue cracks, namely, subsurface-origin macropitting and surface-origin macropitting. The article describes the factors influencing contact fatigue life of hardened steel bearings and gears, including hardness, inclusions, carbides, and residual stresses.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004220
EISBN: 978-1-62708-184-9
... practice to use a more corrosion-resistant material. Typically, galvanized steel is recommended and used, either hot-dip or electroplated. Fig. 3 Typical metallic anchors (a) to (g) and ties (h) to (o) used in masonry walls Other metallic components that may contact mortar include window...
Abstract
This article discusses the generic situation of steel reacting with the environments found in structures. Two environments are specifically discussed: atmospheric and cementitious. The article describes the utility of different corrosion protection methods for atmospheric corrosion and cementitious systems. It presents examples of problems that have arisen in the corrosion performance of steel.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003751
EISBN: 978-1-62708-177-1
... exceptional wear resistance. However, D2 tool steel is also brittle and sensitive to abuse by an impact force. Certain rolls from the same vendor would perform adequately, whereas other rolls would break and spall immediately after being installed. Field metallography was employed in the roll shop to examine...
Abstract
This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation in the metallographic laboratory: grinding, polishing, etching, preparing a replica, and obtaining a small sample. The article also illustrates the applications of field metallography with case studies.
1