Skip Nav Destination
Close Modal
By
Byron Blakey-Milner, Anton du Plessis, Paul Gradl, Leilani Cooper, Christopher Roberts ...
Search Results for
spacecraft
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 93 Search Results for
spacecraft
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Fig. 6 Antenna assembly for the Seawinds spacecraft. Courtesy of Composite Optics, Inc./JPL
More
Image
Published: 01 January 2001
Fig. 7 Coated carbon-carbon thermal shield shown in spacecraft. Courtesy of Lockheed Martin Astronautics
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003475
EISBN: 978-1-62708-195-5
... Abstract This article discusses composites for unmanned space vehicles and provides an overview of key design drivers, challenges, and environment for use of composites in spacecraft, launch vehicles, and missiles. It describes the design allowable properties of composite materials. The article...
Abstract
This article discusses composites for unmanned space vehicles and provides an overview of key design drivers, challenges, and environment for use of composites in spacecraft, launch vehicles, and missiles. It describes the design allowable properties of composite materials. The article provides information on the specific state-of-the-art applications of composite materials for spacecraft missiles and launch vehicles. A discussion on the key applications, including solid rocket motor casings, payload fairings, and payload support structures, is presented.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003478
EISBN: 978-1-62708-195-5
... Abstract This article presents an overview of the material properties of carbon-carbon composites. It provides information on the applications of carbon-carbon composites in electronic thermal planes, spacecraft thermal doublers, spacecraft thermal shields, spacecraft radiators, and aircraft...
Abstract
This article presents an overview of the material properties of carbon-carbon composites. It provides information on the applications of carbon-carbon composites in electronic thermal planes, spacecraft thermal doublers, spacecraft thermal shields, spacecraft radiators, and aircraft heat exchangers.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001465
EISBN: 978-1-62708-173-3
...,” or miscellaneous small and large pieces of disintegrated satellites, material jettisoned from spacecraft, and other miscellaneous material. This debris is travelling at very high speeds, and may not be in the same orbital path and direction as a spacecraft. A resulting high-speed collision, even with a small piece...
Abstract
Welding as an assembly process has become increasingly more attractive to designers of space structures because of its sufficient strength, endurance, reliability during their service lives, and ease of repair. This article reviews a variety of applications for welding in space and low-gravity environments and describes the unique aspects of the space environment. It compares the applicable welding processes, namely, electron-beam welding, laser-beam welding, and gas-tungsten arc welding and examines the metallurgy of low-gravity welds. Steps taken to ensure the continued development of welding technology in space are also discussed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003396
EISBN: 978-1-62708-195-5
... Abstract Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing...
Abstract
Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing costs associated with design and manufacturing options for advanced composites programs. It presents an example of a composite exhaust nozzle shroud where the design and manufacture options were analyzed and adjusted, based on the use of cost analysis tools. The article also lists some of the attributes found in various cost modeling software and the potential cost benefits.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... Abstract Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Book Chapter
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006983
EISBN: 978-1-62708-439-0
... Abstract This article presents the use of additive manufacturing (AM) in the space industry. It discusses metal AM processes and summarizes metal AM materials, including their relevant process categories and references. It also presents the design for AM for spacecraft. The article also...
Abstract
This article presents the use of additive manufacturing (AM) in the space industry. It discusses metal AM processes and summarizes metal AM materials, including their relevant process categories and references. It also presents the design for AM for spacecraft. The article also provides an overview of in-space manufacturing and on-orbit servicing, assembly, and manufacturing. It presents some of the specific areas that must be understood for the qualification of AM. The article also discusses future trends, challenges, and opportunities for aerospace.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006635
EISBN: 978-1-62708-213-6
... for preparing the reagent solution(s), for performing the spot test, and for interpreting the results, is also included. The article discusses two specialized applications of qualitative analysis, namely illicit drug identification and spacecraft drinking water quality testing. It also contains tables listing...
Abstract
This article presents a summary of the chemical fundamentals, general techniques, limitations, and applications of chemical spot testing as well as a brief overview of innovations and specialized applications. A list of selected reagents, including abbreviated instructions for preparing the reagent solution(s), for performing the spot test, and for interpreting the results, is also included. The article discusses two specialized applications of qualitative analysis, namely illicit drug identification and spacecraft drinking water quality testing. It also contains tables listing common presumptive tests for detecting anions and cations in aqueous solution.
Image
Published: 01 January 2001
Fig. 5 Thermally stable bench for the far-ultraviolet spectroscopic Explorer spacecraft. Courtesy of NASA/Swales/Alliant Techsystems
More
Image
Published: 01 January 2001
Fig. 3 Composite grid structure for the fast orbit-recording transient events spacecraft. Courtesy of Composite Optics Inc./Los Alamos National Laboratory
More
Image
Published: 01 January 1996
Fig. 14 Fatigue of commercial pure 9980A magnesium (UNS M19980) in air and in vacuum. Conditions: cantilever bending, R = −1, 30 Hz, room temperature. Source: J. Spacecraft Rockets , Vol 5, 1968, p 700–704
More
Image
Published: 01 January 2001
pressurant tank (right). (c) The nearly complete spacecraft with solar array panels
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... applications. One of the best examples is spacecraft, for which mass and thermal management are critical issues. Candidate Composite Materials A composite material can be defined as two or more materials bonded together ( Ref 2 ). Composites are nothing new in electronic packaging. For example, polymer...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003490
EISBN: 978-1-62708-195-5
...% stronger than a metallic or wooden construction. Since then, advanced composite materials have found many applications in aeronautical and spacecraft structures. Their inherent characteristics offered new capabilities and dramatic improvements to many aerospace structures and ensured their widespread...
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000631
EISBN: 978-1-62708-181-8
... found in low earth orbit (LEO) on a silver solar cell interconnect. The pure silver foil, 40 μm (1.5 mil) thick, was exposed to the LEO environment for 40 h at 100 °C (210 °F) in the spacecraft velocity direction. The sample was flown on Space Shuttle flight 8. The original surface of the interconnect...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of electronic materials, including L-shaped electronic flat pack, transistor base lead, ohmic contact window, and brush/slip ring assembly. The fractographs illustrate the atomic oxygen environment exposure effect, solar cell interconnect, integrated circuit defects, and fatigue failure of these materials.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006729
EISBN: 978-1-62708-210-5
... in spacecraft applications. A hot-working processing map of alloy 7020 in a prior hot-forged condition is shown in Fig 1 . Flow stress values of alloy 7020 at different temperatures and strain rates are given in Table 5 for various strains. Optimum hot-working processing conditions (forgings...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005228
EISBN: 978-1-62708-187-0
... be able to take advantage of the reduced gravitational environment of orbiting spacecraft to study, among other subjects, solidification and crystal growth phenomena. Spacelab -, Russian Mir station-, and Shuttle-based experiments included investigations of fluids, biotechnology, combustion...
Abstract
Gravity has profound influences on most solidification and crystal growth processes. Modification of gravity over practical time scales for the purposes of modifying or controlling solidification proves to be a far more daunting and expensive technological challenge. This article discusses various microgravity solidification experiments that involve pure metals, alloys, and semiconductors and presents the official NASA acronyms for them. MEPHISTO, TEMPUS, the isothermal dendritic growth experiment, and advanced gradient heating facility, are also discussed.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
... to these power plants, propulsion for nuclear-powered surface ships, submarines, and spacecraft use similar nuclear fission technology. In the future, small modular nuclear reactors for local electricity and process heat generation may be deployed especially where electricity is currently not available...
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
... conductivity (210 W/m · K, or 121 Btu/ft · h · F). Unalloyed beryllium is used in weapons, spacecraft, rocket nozzles, structural tubing, optical components, and precision instruments. The specific modulus, that is, the ratio of elastic modulus to density, is higher than that of aluminum, magnesium...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
1