Skip Nav Destination
Close Modal
Search Results for
sonic and ultrasonic testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80 Search Results for
sonic and ultrasonic testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002159
EISBN: 978-1-62708-188-7
... Fig. 6 Ultrasonic impact grinding machine. Courtesy of Sonic Mill Fig. 7 Ultrasonic impact grinding machine with computer numerical control and camera vision. Courtesy of Bullen Ultrasonics Cutting Tool The cutting tool, custom shaped to the hole or cavity required, is most...
Abstract
The ultrasonic machining (USM) process consists of two methods, namely, ultrasonic impact grinding and rotary USM. This article lists the major ultrasonic components that are similar to both rotary USM and ultrasonic impact grinding. It also provides schematic representations of the components used in rotary USM and ultrasonic impact grinding. The article describes the operations of the components of the rotary ultrasonic machine and ultrasonic impact grinding machine. It discusses the applications of the rotary ultrasonic machine: drilling, milling, and surface grinding. The article concludes with information on machining characteristics of ultrasonic impact grinding.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... no indication of any substantial surface damage to hard metals (Ti-6-4 and Inconel 718) from repeated testing with an ultrasonic welder. The study indicates that repeated welder contact could result in some cold working of the metal surface and fretting. Welder testing did not cause any statistically...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006457
EISBN: 978-1-62708-190-0
.... If the adhesive is x-ray opaque, this condition is readily detected by directing the radiation at an angle of approximately 30° with respect to the centerline of the core or closure web. If the adhesive is not x-ray opaque, then ultrasonic, eddy sonic, and tap tests can be used to locate the area having unbonded...
Abstract
Adhesive-bonded joints are extensively used in aircraft components and assemblies where structural integrity is critical. This article addresses the problem of how to inspect bonded assemblies so that all discrepancies are identified. It describes several inspection techniques and presents drawbacks and limitations of these techniques. Generic flaw types and flaw-producing mechanisms are listed in a table. The article discusses metal-to-metal defects, adherend defects, honeycomb sandwich defects, repair defects, and in-service defects. It reviews the methods applicable to the inspection of bonded structures, including visual inspection, ultrasonic inspection, X-ray radiography, and neutron radiography. The evaluation and correlation of inspection results are also discussed. The article concludes with information on the effects of ultrasonic wave interference in the ultrasonic inspection of adhesive-bonded joints.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.9781627081900
EISBN: 978-1-62708-190-0
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003229
EISBN: 978-1-62708-199-3
... available. Generally, detection can be accomplished using instruments that are already installed in the system. Acoustic Methods Turbulent flow of a pressurized gas through a leak produces sound of both sonic and ultrasonic frequencies. If the leak is large, it probably can be detected with the ear...
Abstract
Leak testing is used to determine the rate at which a liquid or gas penetrates from inside a component or assembly to the outside, or vice versa. This article discusses the type of leaks, namely real leaks, and virtual leaks. It describes the leak testing of fluid systems at pressure through acoustic method and bubble testing. The article gives a short note on types of leak detectors, sulfur hexafluoride detectors and mass-spectrometer. It tabulates the pressure and vacuum system leak-testing methods and discusses the application of gas detectors in leak testing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006115
EISBN: 978-1-62708-175-7
.... The article summarizes the sieving methods for powders. The sieving methods include hand sieving, machine sieving, manual wet sieving, air jet sieving, sonic sifter, wet sieving by machine, the Seishin robot sifter, automated systems, and ultrasonic machine sieving. The article outlines the sieve types...
Abstract
This article summarizes sampling of powders, which includes the sampling of stored material and flowing streams, sample reduction and evaluation, and weight of sample required. It also summarizes the classification of powders. Classifiers are divided into two categories: counterflow equilibrium and crossflow separation. Classification methods are used to exclude certain powder sizes from a powder distribution and to obtain particular powder distributions. For example, sieving methods are used to obtain particular powder distributions and to obtain narrow size ranges of a powder. The article summarizes the sieving methods for powders. The sieving methods include hand sieving, machine sieving, manual wet sieving, air jet sieving, sonic sifter, wet sieving by machine, the Seishin robot sifter, automated systems, and ultrasonic machine sieving. The article outlines the sieve types and the process variables of the sieving process. An appendix reviews dispersion of powders in liquids.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
...-reinforced polymer-matrix composites low-frequency vibration method metal-matrix composites nondestructive evaluation thermography ultrasonic emission Nondestructive Testing of Composite Materials Composite materials, because of their nonhomogeneous, anisotropic characteristics, pose significant...
Abstract
This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003315
EISBN: 978-1-62708-176-4
... Abstract This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect...
Abstract
This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect to strain-rate-dependent material behavior. The article also provides information on the applications of the ultrasonic fatigue test.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006474
EISBN: 978-1-62708-190-0
... ultrasonic transducer (in some cases more than 20 cm, or 8 in., in diameter) to generate plane waves, which provide the ultrasonic illumination, and then uses liquid-surface holography, through the interaction with a beam from a reference transducer, to convert the sonic image into a wave pattern...
Abstract
Acoustical holography is the extension of holography into the ultrasonic domain. The basic systems for acoustical holography are the liquid-surface type and the scanning type. This article discusses the applications for acoustical holography, including inspection of large composite parts, through-transmission breast imaging system, inspection of welds in thick materials, and inspection of sleeve-bearing stock. It describes the basic system for liquid-surface acoustical holography and scanning acoustical holography. A comparison between these techniques is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001478
EISBN: 978-1-62708-173-3
... and conformance to specifications. Brazing procedures should be qualified to meet specification requirements using both nondestructive and destructive inspection methods. Nondestructive Inspection Nondestructive inspection ( Ref 6 ) or testing techniques include visual, leak, radiographic, ultrasonic...
Abstract
This article outlines the requirements and methods associated with the inspection of brazements. It emphasizes the incorporation of these requirements into the overall quality system. The article reviews the acceptance limits, design limitations, and nondestructive and destructive inspection techniques involved in the brazement inspection. Selected case studies are also provided for further reference.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006438
EISBN: 978-1-62708-190-0
... Testing of Weldments DoD Adopted 19 ASTM E213, Standard Practice for Ultrasonic Testing of Metal Pipe and Tubing 20 ASTM E376, Standard Practice for Measuring Coating Thickness by Magnetic-Field or Eddy-Current (Electromagnetic) Testing Methods 21 ASTM E498/E498M-11, Standard Practice...
Abstract
This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods with their applications, limitations, and advantages. It includes details on NDE codes, calibration standards, inspection frequency, guidance on how to perform inspections, applicability, and mandatory and nonmandatory practice. The article also provides tips on where to focus inspections in order to align with the likely areas of damage or degradation and a number of other aspects of inspection.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
..., or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005325
EISBN: 978-1-62708-187-0
... to machined bars. This compares with a 50% reduction for FG iron of comparable strength and a 32% reduction for ferritic SG iron. Sonic and Ultrasonic Testing of Properties Resonant frequency (sonic testing) and ultrasonic velocity measurements provide reliable methods for verifying the structure...
Abstract
This article reviews the graphite morphology, chemical composition requirements, castability, mechanical properties, and corrosion resistance of compacted graphite (CG) irons. It describes the factors affecting the mechanical properties of CG irons. The article also presents the advantages of CG irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003236
EISBN: 978-1-62708-199-3
... are also addressed. The article concludes with a review of the advantages and disadvantages of ultrasonic inspection compared with other methods applications of the technique. couplants flaw detection nondestructive testing piezoelectric transducer elements pulse-echo method transmission method...
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high-frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This article provides a detailed account of ultrasonic flaw detectors, including ultrasonic transducers and types of search units and couplants. The article describes pulse-echo and transmission inspection methods and data interpretation. The general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection are also addressed. The article concludes with a review of the advantages and disadvantages of ultrasonic inspection compared with other methods applications of the technique.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006470
EISBN: 978-1-62708-190-0
...” in this Volume. Fig. 1 Schematic for a two-transducer nondestructive testing (NDT) system Advantages and Disadvantages The principal advantages of ultrasonic inspection, as compared to other methods used for nondestructive inspection of parts, are: Superior penetrating power, which allows...
Abstract
Ultrasonic inspection is a family of nondestructive methods in which beams of high-frequency mechanical waves are introduced into materials, using transducers, for the detection and characterization of both surface and subsurface anomalies and flaws in the material. This article describes the basic equipment in ultrasonic inspection systems, and lists the advantages and disadvantages of these systems. It discusses the applications of ultrasonic inspection and also the general characteristics of ultrasonic waves in terms of wave propagation, longitudinal waves, transverse waves, surface waves, and lamb waves. The article reviews the major variables in ultrasonic inspection, including frequency, acoustic impedance, angle of incidence, and beam intensity. It discusses the attenuation of ultrasonic beams and provides information on the pulse-echo and transmission methods for implementing ultrasonic inspection.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... materials ( Ref 1 – 7 ). The techniques can be used to characterize material discontinuities such as delaminations, cracks, voids, and matrix-rich pockets. It is also possible to visualize fiber orientation, measure changes in material thickness, and determine elastic and sonic properties. Ultrasonic...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... more than the use of destructive end-result tests. This article describes ultrasonic nondestructive analysis and important quality control techniques used during the manufacture of composite components. Ultrasonic Nondestructive Analysis Ultrasonic nondestructive analysis techniques can be used...
Abstract
Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It reviews the important quality control techniques used during the manufacture of composite components by analyzing tooling control, material control, pattern orientation control, and in-process control.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006982
EISBN: 978-1-62708-439-0
... Abstract This article focuses on ultrasonic testing (UT) applied to metallic additive manufacturing (AM) parts, presenting the basic principles of UT. It provides a detailed discussion on postprocess UT inspection of powder-bed-fusion-manufactured samples and directed-energy-deposition...
Abstract
This article focuses on ultrasonic testing (UT) applied to metallic additive manufacturing (AM) parts, presenting the basic principles of UT. It provides a detailed discussion on postprocess UT inspection of powder-bed-fusion-manufactured samples and directed-energy-deposition-manufactured samples.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006441
EISBN: 978-1-62708-190-0
... in the oil and gas industry. Guided wave testing is used to detect defects in long structural components such as pipelines by making use of elastic waves that propagate along the structure. The waves, which are typically in the upper audio-frequency range or low ultrasonic range (10 to 150 kHz), are guided...
Abstract
Guided wave testing (GWT) is a method of nondestructive evaluation for the inspection of pipelines. This article focuses mainly on explaining GWT as it is applied in routine established use, covered by standards, in the oil and gas industry and also introduces some of the other contexts in which its use is growing in other evolving applications. It discusses the various guided wave modes and their selection criteria. The article provides information on considerations for mode control and the sensitivity of the GWT to the defect. It also shows some examples of advanced GWT.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001226
EISBN: 978-1-62708-170-2
... Trichlorotrifluoroethane (fluorocarbon solvent), sonic-vapor degreaser Source: Ref 1 Solution Temperature Solution temperature has a profound effect on ultrasonic cleaning effectiveness. In general, higher temperatures will result in higher cavitation intensity and better cleaning. However...
Abstract
Ultrasonic cleaning involves the use of high-frequency sound waves that is above the upper range of human heating, or about 18 kHz, to remove a variety of contaminants from parts immersed in aqueous media. This article describes the process, design considerations and the equipment in ultrasonic cleaning. The components used in the generation of ultrasonic wave include piezoelectric and magnetostrictive transducers that are used in ultrasonic generators and tanks. The effects of solution type and its temperature on the effectiveness of ultrasonic cleaning are also discussed.
1