Skip Nav Destination
Close Modal
By
Luther M. Gammon, Robert D. Briggs, John M. Packard, Kurt W. Batson, Rodney Boyer ...
By
Rodney R. Boyer, John Foltz
By
Alexey Sverdlin, Steven Lampman
By
W.A. Baeslack, III, J.R. Davis, C.E. Cross
By
Rodney R. Boyer
By
S.L. Semiatin, D.U. Furrer
By
John Foltz, Michael Gram
By
Xin Yao
By
Joseph D. Beal, Rodney Boyer, Daniel Sanders
By
Jim Moran
By
Kumar Sadayappan, Mahi Sahoo, Harold T. Michels
By
S.L. Semiatin, M.G. Glavicic, S.V. Shevchenko, O.M. Ivasishin, Y.B. Chun ...
By
A. Bloyce, P.H. Morton, T. Bell
By
Ronald N. Caron, James T. Staley
Search Results for
solute-rich beta alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 132
Search Results for solute-rich beta alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fatigue and Fracture Properties of Titanium Alloys
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys. alpha alloys alpha-beta alloys beta alloys fatigue fracture modes fatigue life fracture toughness mechanical strength...
Abstract
This article summarizes the metallurgical and environmental variables that affect fracture toughness, fatigue life, and subcritical crack growth of titanium alloys, such as chemistry, microstructure, texture, environment, and loading. The classes of titanium alloys considered in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys.
Book Chapter
Metallography and Microstructures of Titanium and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
... and “near-beta.” This distinction is necessary, because the phase transformations that occur, the reaction kinetics, and the processing could be different if the alloy is a near-beta (lean) alloy, such as Ti-10V-2Fe-3Al, or a rich beta alloy, such as Ti-13V-11Cr-3Al. Further information...
Abstract
This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information on the macroexamination and microexamination for these alloys. It concludes with a discussion on the several metallographic techniques developed for specific purposes, such as recrystallization studies and microstructure/fracture topography correlations.
Book Chapter
Effect of Heat Treatment on Mechanical Properties of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... as follows: Alpha and near-alpha titanium alloys: Can be stress relieved and annealed, but high strength cannot be developed in these alloys by aging after a solution treatment and quench. However, creep, fatigue strength, and damage tolerance can be influenced by heat treatment. Alpha-beta...
Abstract
The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides a detailed discussion on the effects of heat treatment on the mechanical properties for three general classes of titanium alloys, namely, alpha and near-alpha titanium alloys, alpha-beta alloys, and beta alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... max each, 0.4 max total. (c) 0.1 max each, 0.3 max total. (d) Alloy Ti-17 is an α-rich near-β alloy that might be classified as an α-β alloy, depending on heat treatment. (e) 0.005 max Y and 0.03 max B The most widely used titanium alloy is the Ti-6Al-4V alpha-beta alloy. This alloy...
Abstract
This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes the typical applications of various titanium-base materials, and explains the crystal structure, effect of impurities, and microstructural constituents of titanium alloys. The article provides a brief description on the processing of wrought titanium alloys, including primary fabrication in which ingots are converted into general mill products and secondary fabrication (forging, extrusion, forming, machining, chemical milling and joining) of finished shapes from mill products and the heat treatment of titanium alloys.
Book Chapter
Heat Treatable Nonferrous Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... the last decade ( Ref 7 ). The magnesium-silicon ratio for maximum strengthening is probably closer to 1.73 for solute-rich alloys such as 6082 and 6061 ( Ref 8 ). Aluminum-Silicon Casting Alloys (3xx.0) with Magnesium and/or Copper The aluminum-silicon casting alloys (3xx.0) with magnesium...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Book Chapter
Selection and Weldability of Conventional Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
... such as welding and forming requirements, normally provide the criteria that determine the alloy composition, structure (alpha, near-alpha, alpha-beta, or metastable beta), heat treatment (some variant of either annealing or solution treating and aging), and level of process control selected or prescribed...
Abstract
This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys, and metastable beta alloys. The article further discusses the weld microstructure for alpha-beta and metastable beta alloys and describes welding defects observed in titanium alloys. The influence of macro- and microstructural characteristics of titanium weldment on mechanical properties is also discussed. The article concludes with a discussion on the different welding processes used in the welding of titanium and titanium alloys.
Book Chapter
Introduction and Overview of Titanium and Titanium Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... primarily of α and behave more like conventional α alloys than α-β alloys. Alpha-Beta Alloys Alpha-beta alloys contain one or more α stabilizers or α-soluble elements plus one or more β stabilizers. These alloys retain more β phase after solution treatment than do near-α alloys, the specific amount...
Abstract
Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure vessels, optic-system support structures, prosthetic devices, and applications requiring corrosion resistance and high strength. It explains the effects of alloying elements in titanium alloys as they play an important role in controlling the microstructure and properties and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and advanced titanium alloys (titanium-matrix composites and titanium aluminides).
Book Chapter
Modeling of Microstructure Evolution during the Thermomechanical Processing of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
..., equiaxed alpha and secondary (lamellar) alpha in alpha/beta titanium alloys during cooling following heat treatment in the alpha+beta phase field Precipitation of acicular/lamellar alpha in alpha/beta and near-beta alloys following beta solution treatment The following discussion focuses...
Abstract
This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium alloys, with their corresponding equations.
Book Chapter
Introduction to Titanium and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
.... Fig. 2 Basic types of titanium alloying elements. (a) Alpha stabilizers (such as solute addition of aluminum, oxygen, nitrogen, carbon, or gallium), where the dotted phase boundaries refer specifically to the titanium-aluminum system. (b) Isomorphous beta stabilizers (such as solute additions...
Abstract
This article introduces the different types, distinctions, and grades of commercially pure titanium and titanium alloys. It describes three types of alloying elements: alpha stabilizers, beta stabilizers, and neutral additions. The article discusses the basic categories of titanium alloys, namely, alpha and near-alpha titanium alloys, beta and near-beta titanium alloys, and alpha-beta titanium alloys. It also describes the general microstructural features of titanium alloys.
Book Chapter
Heat Treating of Low-Melting-Point Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... Abstract This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been...
Abstract
This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been practiced for bearing alloys, pewterware, and organ pipe alloys. The article reviews the principles underlying these applications.
Book Chapter
Quenching of Titanium and Control of Residual Stresses
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... to produce exceptional structures from β alloys. The principal advantages of β alloys are that they have high hardenability, good cold formability in the solution-treated condition, and can be hardened to fairly high strength levels. Beta alloys typically are formed or otherwise fabricated...
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
... that incompletely respond to heat treatment, and for this reason microstructural standards have been established for allowable limits on β flecks in various α-β alloys. Beta flecks are more objectionable in β-rich α-β alloys than in leaner alloys and are not acceptable in β alloys. Primary Fabrication...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005337
EISBN: 978-1-62708-187-0
... resistance to intermediate temperatures. Excellent formability can be expected in the solution-treated condition. Beta-type alloys also have good combinations of properties in thin and heavy sections. Effects of Alloying Elements Alloying elements in titanium are classified into α or β stabilizing...
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article begins with a description of the historical perspective of titanium casting technology. It discusses the types of molding methods, such as rammed graphite molding and lost-wax investment molding. The article provides information on the casting design, melting, postcasting, and pouring practices. It describes the microstructure and mechanical properties of Ti-6AI-4V alloy. The article examines the product applications of titanium alloy castings. The tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
Book Chapter
Forming of Titanium and Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... plus one or more β stabilizers. These alloys retain more β phase after final heat treatment than near-α alloys; the specific amount depends on the amount of β stabilizers present and on the solution heat treating temperature and time. Alpha-beta alloys can be strengthened by solution treating...
Abstract
This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning, rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming.
Book Chapter
Effects of Metallurgical Variables on the Corrosion of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003618
EISBN: 978-1-62708-182-5
... aluminum alloys intermetallic constituent particles trace impurity elements pitting corrosion solid solution aluminum THE METALLURGICAL EFFECTS on corrosion of aluminum can be classified into two categories. In the first category are effects from insoluble, intermetallic constituent particles...
Abstract
This article provides an overview of the metallurgical effects on corrosion of different series of aluminum alloys (1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, and 7xxx) that are classified into two categories. The first category includes the effects from insoluble, intermetallic constituent particles generally formed from trace impurity elements that play a predominant role in pitting corrosion. The second category comprises the effects from precipitation of secondary phases and effects from solute remaining in solid solution on corrosion of aluminum.
Book Chapter
Copper and Copper Alloy Castings
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... microstructure. Higher levels of zinc promote mixed microstructure in alloys known as alpha-beta brass. Tin Tin is the oldest known alloying element in copper and is a key alloying element in many bronzes. Tin is also a potent solid-solution strengthener in copper, even more so than zinc, because less tin...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Book Chapter
Modeling and Simulation of Texture Evolution during the Thermomechanical Processing of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... growth of materials that have been prior hot or cold worked is addressed. Beta Grain Growth Beta annealing is often used for alpha/beta titanium alloys to develop a transformed-beta microstructure for fracture-critical aerospace applications. Beta annealing is also applied as a solution treatment...
Abstract
The modeling and simulation of texture evolution for titanium alloys is often tightly coupled to microstructure evolution. This article focuses on a number of problems for titanium alloys in which such coupling is critical in the development of quantitative models. It discusses the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase (alpha/beta) titanium alloys are also discussed.
Book Chapter
Surface Engineering of Titanium and Titanium Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... reoxidation of the product during processing as a possible solution. Metallurgical Restrictions on Descaling Solution-treated, age-hardenable titanium alloys are sensitive to time-temperature reactions and the temperatures of descaling media. The metastable or high-beta alloys, which are solution...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book Chapter
Heat Treating of Nonferrous Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
... of softening desired. Except for the low-temperature stabilization treatment sometimes given for 5 xxx series alloys (which is a mill treatment and not discussed in this article), complete or partial annealing treatments are the only ones used for non-heat-treatable alloys. Precipitation from Solid Solution...
Abstract
This article discusses different heat treating techniques, including quenching, homogenizing, annealing, stress relieving, stress equalizing, quench hardening, strain hardening, tempering, solution heat treating, and precipitation heat treating (age hardening) for different grades of aluminum alloys, copper alloys, magnesium alloys, nickel and nickel alloys, and titanium and titanium alloys and its product forms.
Book Chapter
Effects of Composition, Processing, and Structure on Properties of Nonferrous Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... be found in Ref 2 , 3 , 10 , 11 , and 17 . The eutectic reaction is illustrated by the aluminum-copper system ( Fig. 1 ). When the liquidus temperature of aluminum-rich alloys is reached during solidification, the liquid begins to solidify into a solid solution of copper in aluminum (α-aluminum...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
1