Skip Nav Destination
Close Modal
Search Results for
solidified cast metal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 665
Search Results for solidified cast metal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005220
EISBN: 978-1-62708-187-0
... and unfurling on mechanical properties of the solidified cast metal. It provides a discussion on the mechanisms of unfurling to determine the casting properties of the metals. These include gas precipitation, shrinkage, linear contraction, dendrite pushing, and nucleation and growth of intermetallics...
Abstract
Analysis of bifilms provides a simple, powerful, and elegant concept to explain many features of the metallurgy of castings. This article describes the effects of bifilms in metals. Mechanisms for the entrainment of bifilms are reviewed. The article describes the effect of furling and unfurling on mechanical properties of the solidified cast metal. It provides a discussion on the mechanisms of unfurling to determine the casting properties of the metals. These include gas precipitation, shrinkage, linear contraction, dendrite pushing, and nucleation and growth of intermetallics. The article also describes the role of bifilm defects in fracture.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... Abstract Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes...
Abstract
Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes, steering and suspension components, etc.), prosthetics, and gas turbine engine hardware. This introduction explains the steps involved in making a casting using a simplified flow diagram, and discusses the ferrous and nonferrous alloys used for metal casting.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009017
EISBN: 978-1-62708-187-0
... Abstract A gating system is the conduit network through which liquid metal enters a mold and flows to fill the mold cavity, where the metal can then solidify to form the desired casting shape. This article discusses various desirable design considerations for the gating system. Proper design...
Abstract
A gating system is the conduit network through which liquid metal enters a mold and flows to fill the mold cavity, where the metal can then solidify to form the desired casting shape. This article discusses various desirable design considerations for the gating system. Proper design of an optimized gating system will be made easier by the application of several fundamental principles of fluid flow. The article illustrates the Bernoulli's theorem, the law of continuity, and the effect of momentum. Most casting alloys are subject to the presence of particles that can deleteriously affect the physical properties and appearance of the casting. The article lists a variety of adverse effects of the particles. Ceramic filters, when correctly applied, can be relied on to trap particles before they can enter the casting cavity. The article concludes with information on the advantages and the types of the ceramic filters.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005339
EISBN: 978-1-62708-187-0
... reinforcements are incorporated in the molten metal or alloy melt, which are then allowed to solidify to form a composite. Cast MMCs are not new to the industry. Although traditionally not called a composite, the aluminum-silicon eutectic alloy ( Fig. 1 ) is composed of silicon needles embedded in an num...
Abstract
Metal matrix composites (MMCs) can be synthesized by vapor phase, liquid phase, or solid phase processes. This article emphasizes the liquid phase processing where solid reinforcements are incorporated in the molten metal or alloy melt that is allowed to solidify to form a composite. It illustrates the three broad categories of MMCs depending on the aspect ratio of the reinforcing phase. The categories include continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. The article discusses the two main classes of solidification processing of composites, namely, stir casting and melt infiltration. It describes the effects of reinforcement present in the liquid alloy on solidification. The article examines the automotive, space, and electronic packaging applications of MMCs. It concludes with information on the development of select cast MMCs.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005224
EISBN: 978-1-62708-187-0
... Abstract Semisolid metal (SSM) processing is a special die casting process, where partially solidified metal slurry is injected into a die cavity to form die cast components. This article discusses the flow behavior of an SSM slurry with emphasis on viscosity, rheological behavior, and yield...
Abstract
Semisolid metal (SSM) processing is a special die casting process, where partially solidified metal slurry is injected into a die cavity to form die cast components. This article discusses the flow behavior of an SSM slurry with emphasis on viscosity, rheological behavior, and yield stress. It illustrates the microstructural formation of semisolids under forced convection. The article concludes with an illustration that compares two SSM processes, namely, thixocasting and rheocasting.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
... at the location of the last liquid to solidify. Figure 3 shows the formation of a shrinkage cavity in a pure metal solidifying in a mold where all heat is removed through the mold. If the final casting is to have the same volume as the liquid, a reservoir of molten metal must be placed on the casting to feed...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009016
EISBN: 978-1-62708-187-0
... with the development of suitable reservoirs of feed metal in addition to the desired casting shape so that undesirable shrinkage cavities in the casting are eliminated or moved to locations where they are acceptable for the intended application of the casting. When metals solidify and cool to form a casting...
Abstract
The role of an engineer in designing risers is to make sure that risers provide the feed metal in the right amount, at the right place, and at the right time. This article addresses feed metal volume, riser location, and duration of liquid feed metal. It discusses the three types of feeding systems used in riser design: riser sleeves, topping compounds, and breaker cores.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002484
EISBN: 978-1-62708-194-8
... by differences in structure resulting from cooling rate differences. When cast iron (which is essentially a solution of carbon and silicon in iron) solidifies, the carbon can take different forms, depending on its composition and solidification rate and the way the metal has been treated during melting. Chill...
Abstract
Casting offers the cost advantages over other manufacturing methods for most components. This article reviews the aspects of castings with which designers should be familiar, as well as the methods used by foundries to produce high-integrity castings. It discusses the design concepts that designers and foundries can use to obtain maximum performance from cast parts. The article describes the effects of casting discontinuities on properties, including porosity, inclusions, hot tears, metal penetration, and surface defects. A discussion on hot isostatic pressing treatment of castings is also provided. The article concludes with information on solidification simulation and its use in designing castings.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... times of simple casting shapes. Although originally developed for the solidification of pure metals and alloys solidifying over a very narrow temperature interval, the concept is more broadly applicable and states that the total solidification time of a casting (or casting section) is proportional...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
... be washed into the molten metal and end up as a defect within the solidified part being cast. The molten metal could also infiltrate the molding medium at the mold/metal interface, producing a nonhomogeneous scab of solidified metal and molding medium on the part being cast (see the article “Common Defects...
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005265
EISBN: 978-1-62708-187-0
... is completely filled, the liquid metal is held in position with this differential pressure while solidification takes place. For investment casting, typically only the castings and their in-gates are allowed to solidify before the differential pressure is removed, causing the molten metal in the central runner...
Abstract
This article discusses the general principles and advantages of countergravity mold filling. It details several production implementations that use differential pressure countergravity mold filling methods, namely the countergravity low-pressure air process, countergravity low-pressure vacuum process, countergravity low-pressure inert atmosphere process, countergravity pressure vacuum process, supported shell technique, loose sand vacuum process, and countergravity centrifugal casting process.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003176
EISBN: 978-1-62708-199-3
..., establish the temperature of each point in the mold and each point in the liquid metal at the start of solidification. This produces a more accurate picture of the way the casting solidifies than is possible with models that consider only the surface area to volume ratio of adjacent casting sections...
Abstract
This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting, and the molding method used. Designers can predict the effect of the design on the structure of the final part using solidification simulation models, namely finite element and finite difference models, and rapid prototyping. The article concludes with a short note on how the quality is assured in the foundry.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
... for production by these processes. This is especially true for dispersion-hardened compositions in which severe centerline segregation is encountered. Slab Casting Molten metal solidified between moving belts or blocks produces a slab of 10 to 45 mm (0.4 to 1.8 in.) thickness that is reduced in-line...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
... not be suitable for production by these processes. This is especially true for dispersion-hardened compositions in which severe centerline segregation is encountered. Slab Casting Molten metal solidified between moving belts or blocks produces a slab of 10 to 45 mm (0.4 to 1.8 in.) thickness...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005272
EISBN: 978-1-62708-187-0
...: thixocasting, rheocasting, and thixomolding. rheocasting semisolid metal casting thixocasting thixomolding SEMISOLID METAL (SSM) PROCESSING, also known as semisolid metal casting, semisolid forming, or semisolid metal forging, is a special die casting process wherein a partially solidified metal...
Abstract
Semisolid metal (SSM) processing, also known as semisolid metal casting, semisolid forming, or semisolid metal forging, is a special die casting process. This article discusses the origin and advantages of the SSM processing. It describes three major semisolid processing routes: thixocasting, rheocasting, and thixomolding.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
... Abstract The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before...
Abstract
The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before and during solidification is also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005288
EISBN: 978-1-62708-187-0
... casting pit with integrated casting cylinder and casting table, to which the discharge device is attached by a swivel joint. The liquid metal solidifies in the mold on top of the oscillating casting machine. When the casting cycle is completed, the cast slabs are pushed from the vertical position slightly...
Abstract
This article reviews the history and methods of copper alloy continuous casting. These methods include vertical continuous casting and horizontal continuous casting. The article discusses the upcasting methods used in vertical continuous casting and strip casting used in horizontal continuous casting. The article also describes the methods and processes of wheel casting and the Ohno continuous casting method.
Image
Published: 01 December 2008
Fig. 3 Operating sequence for the hot chamber die casting process. (a) Die is closed, and hot chamber (i.e., gooseneck) is filled with molten metal. (b) Plunger pushes molten metal through gooseneck and nozzle and into the die cavity. Metal is held under pressure until it solidifies. (c
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005227
EISBN: 978-1-62708-187-0
... are dispersed in a metal or an alloy. Structurally, cast MMCs consist of continuous or discontinuous fibers (designated by the subscript f), whiskers (w), or particles (p) in a metal or an alloy that solidifies in the restricted spaces between the reinforcing phase (or phases) to form the bulk of the matrix...
Abstract
This article discusses the solidification of a matrix alloy in cast metal matrix composites (MMCs). It begins with a discussion on the mixing techniques in reinforcement incorporation and wettability of reinforcement. It describes the solidification processes, such as stir mixing and melt infiltration, used in the synthesis of MMCs. The article also considers the fundamentals of the process and presents a computational modeling of particle/solidification front interactions in metal-ceramic systems. The article concludes with information on nanocomposites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003724
EISBN: 978-1-62708-177-1
... peritectics pressure undercooling pure metals solid solutions solidification surface morphology thermal undercooling thermodynamics SOLIDIFICATION PROCESSING is one of the oldest manufacturing processes as it is the principal component of metal casting processing. While solidification science...
Abstract
This article provides information on four different length scales at which surface morphology can be viewed: macro, meso, micro and nanoscale. Elementary thermodynamics demonstrates that a liquid cannot solidify unless some undercooling below the equilibrium (melting) temperature occurs. The article details five types of solidification undercooling, namely, kinetic, thermal, constitutional (solutal), curvature, and pressure undercooling. It explains the types of nucleation which occur in the melt during solidification. The effects of local instabilities at the solid/liquid interface during growth are illustrated. The article also describes the solidification structures of pure metals, solid solutions, eutectics, peritectics, and monotectics.
1