Skip Nav Destination
Close Modal
By
John Marcin, Matthew Donachie
By
Ian Dempster, Ronald Wallis
By
D. Klarstrom, P. Crook, J. Wu
By
Alexey Sverdlin, Steven Lampman
By
George F. Vander Voort, Gabriel M. Lucas, Elena P. Manilova
By
K. Harris, G.L. Erickson, R.E. Schwer
By
William Mankins, Steven Lampman
By
S.D. Kiser
By
Chester J. Van Tyne, John Walters
By
Steven C. Ernst
Search Results for
solid-solution-strengthened superalloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 240
Search Results for solid-solution-strengthened superalloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides...
Abstract
This article covers the current state of materials development of nickel-base superalloys for additive manufacturing (AM) processes and the associated challenges. The discussion focuses on nickel-base superalloy fusion AM processes, providing information on typically encountered cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides a short discussion on binder jet AM and powder recyclability.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... alloy forgings. cobalt-base alloys forging forging equipment grain refinement heat treatment heat-resistant alloys hot deformation iron-nickel superalloys melting microstructure nickel-base alloys powder alloys precipitation-strengthened superalloys solid-solution-strengthened...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Book Chapter
Heat Treatment of Cast Nickel-Base Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
..., endothermic, dry hydrogen, dry argon, and vacuum. age hardening brazing carbides cast nickel-base alloys diffusion coating directionally solidified castings heat treatment polycrystalline cast superalloys solid-solution hardening solution heat treatment strengthening CAST NICKEL-BASE...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... Abstract Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
.... Strengthening of cobalt-base alloys is accomplished by solid-solution alloying (e.g., molybdenum, tungsten, tantalum, and niobium) in combination with carbon to promote carbide precipitation. Compared to the wrought alloys, cast cobalt-base superalloys are characterized by higher contents of high-melting metals...
Abstract
Cobalt is used as an alloying element in alloys for various applications. This article provides a detailed account of the metallurgy of cobalt-base alloys. It focuses on the compositions, properties, and applications of cobalt-base alloys, which include wear-resistant cobalt alloys, heat-resistant cobalt alloys, and cobalt-base corrosion-resistant alloys. The article also describes the heat treatments such as annealing and aging, for these alloys.
Image
General comparison of creep rupture of conventional nickel-base superalloys...
Available to PurchasePublished: 01 June 2016
Fig. 2 General comparison of creep rupture of conventional nickel-base superalloys. (a) 100 h creep-rupture strength of gamma-prime (γ′) nickel alloys compared to solid-solution and carbide-strengthened alloys. (b) 1000 h creep-rupture strength of some selected nickel superalloys
More
Book Chapter
Heat Treatment Metallurgy of Nickel-Base Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... are effective solid-solution strengtheners of Ni 3 Al at room temperature, while tungsten and molybdenum are strengtheners at both room and elevated temperatures. Cobalt does not strengthen Ni 3 Al. The effect of the solid-solution strengthening depends, of course, on how much solute can be added (i.e...
Abstract
This article provides information on nickel alloying elements, and the heat treatment processes of various nickel alloys for applications requiring corrosion resistance and/or high-temperature strength. These processes are homogenization, annealing, solution annealing, solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process.
Book Chapter
Metallography and Microstructures of Cobalt and Cobalt Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003771
EISBN: 978-1-62708-177-1
... 6 C carbides during alloy solidification. Stellite alloy 21 employs molybdenum, rather than tungsten, to strengthen the solid solution. Stellite alloy 21 also contains considerably less carbon. This alloy is more resistant to corrosion than Stellite alloys 1, 6, and 12, because of the high...
Abstract
This article describes the metallurgy and microstructure of high-performance cobalt-base alloys. It discusses metallographic preparation procedures, including sectioning, mounting, grinding, polishing, etching, staining, and heat tinting. It examines the microstructure of cobalt alloys in cast, wrought, and powder metal forms, including magnetic alloys as well as several cobalt-base superalloys.
Book Chapter
Heat Treatable Nonferrous Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... that precede the equilibrium intermetallic CuAl 2 3 xxx Manganese Solid-solution alloys with work hardening 3 xx.x Silicon, with added copper and/or magnesium Heat treatable with copper (magnesium intensifies precipitation) and with strengthening from Mg 2 Si 4 xxx Silicon Solid-solution...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Book Chapter
Metallography and Microstructures of Heat-Resistant Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
...–0.9 A/cm 2 (3–6 A/in. 2 ), 30 s for aged specimens, longer for solution-annealed ones; keep cool (10-15 °C, or 50-60°F); best results by polishing in 5 s intervals 6. 70 mL methanol and 10 mL H 2 SO 4 For nickel-base superalloys, use at 20–25 V dc, 0.3–0.8 A/cm 2 (2–5 A/in. 2 ), room...
Abstract
This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural constituents of cast and wrought heat-resistant alloys. It describes the identification of ferrite by magnetic etching. The transmission electron microscopy examination of the fine strengthening phases in wrought alloys and bulk extraction in heat-resistant alloys are included. The article also reviews the gamma prime phase, gamma double prime phase, eta phase, laves phase, sigma phase, mu phase, and chi phase in wrought heat-resistant alloys.
Book Chapter
Directionally Solidified and Single-Crystal Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... in turbine rotor blade cooling For the past 28 years, high-pressure turbine blades and vanes have been made from cast nickel-base superalloys. The higher-strength alloys are hardened by a combination of approximately 60 vol% γ′ [Ni 3 (Al,Ti)] precipitated in a γ matrix, with solid-solution...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Book Chapter
Heat Treatment of Wrought Nickel Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
... their strength mostly from solid-solution alloying, work hardening, and precipitated phases. The principal strengthening precipitates are the Ni 3 Al gamma prime (γ′) and the Ni 3 Nb gamma double-prime (γ″) intermetallic phases that occur in iron-nickel- and nickel-base alloys. Carbides also may provide limited...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Book Chapter
Special Metallurgical Welding Considerations for Nickel and Cobalt Alloys and Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
... Abstract The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires...
Abstract
The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires special knowledge and treatments developed specifically for each material. This article emphasizes the special metallurgical welding considerations for welding solid-solution and precipitation hardening nickel alloys, cobalt alloys, and superalloys.
Book Chapter
Warm and Hot Working Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... elements (e.g., copper) in the metal dissolve into the aluminum, creating a solid solution. The second step is to quench the metal from this high temperature. This step is typically done in water. Quench cracking does not occur as readily in aluminum alloys as in steels, so the severity of the quench...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Book Chapter
Refractory Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... products, and reduces the degree of recrystallization embrittlement. The greatest improvements in properties are obtained with additions of 10 to 26 wt% Re to tungsten and 11 to 50 wt% Re to molybdenum. Rhenium is also a solid-solution-strengthening alloying element in superalloys. A number...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... precipitated phase has been discovered to equal the benefit imparted by γ′ nickel-base superalloys. Solid-solution strengthening results principally from the chromium, tantalum, niobium, and tungsten additions, while second-phase strengthening is obtained primarily from the carbides and carbonitrides formed...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... superalloys. The superalloys derive their strength from solid-solution hardeners and precipitated phases. Principal strengthening precipitate phases are γ′ and γ″. Carbides may provide limited strengthening directly (e.g., through dispersion hardening) or, more commonly, indirectly (e.g., by stabilizing grain...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Book Chapter
Postweld Heat Treatment of Nonferrous High-Temperature Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001424
EISBN: 978-1-62708-173-3
... Abstract This article provides an overview of the types of postweld heat treatment processes carried out in solid-solution-strengthened and precipitation-strengthened nonferrous high-temperature nickel and cobalt alloys. nonferrous high-temperature materials postweld heat treatment...
Abstract
This article provides an overview of the types of postweld heat treatment processes carried out in solid-solution-strengthened and precipitation-strengthened nonferrous high-temperature nickel and cobalt alloys.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
... in superalloys Effect Iron base Cobalt base Nickel base Solid-solution strengtheners Cr, Mo Nb, Cr, Mo, Ni, W, Ta Co, Cr, Fe, Mo, W, Ta Fcc matrix stabilizers C, W, Ni Ni … Carbide form MC Type Ti Ti, Ta, Nb W, Ta, Ti, Mo, Nb M 7 C 3 type … Cr Cr M 23 C 6 type Cr...
Abstract
This article focuses on the properties of conventional wrought superalloys based on nickel, iron, and cobalt, as well as on the properties of alloys produced from powder. The powder metallurgy (P/M) category includes alloys that were originally developed as casting alloys; new alloy compositions developed specifically to benefit from powder processing; and oxide dispersion strengthened alloys (particularly those produced by mechanical alloying). The article discusses some of the applications of superalloys and emphazises the interplay between chemical composition, microstructure, consolidation method, mechanical properties and surface stability of wrought nickel alloys. Vacuum melting processes are a necessity for many nickel- and iron-nickel-base alloys because of the presence of aluminum and titanium as solutes. Cobalt-base alloys do not usually contain these elements and may be melted in air. An appendix to this article presents the property data and corresponding information on a family of cobalt-chromium-tungsten-carbon alloys that use P/M processing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
..., by substitutional solid-solution strengthening, and by grain-boundary strengthening. Stacking faults play a role in the development of properties in these alloys. Crystallography The crystal structure of pure cobalt is hexagonal close-packed (hcp) at room temperature. Above 420 °C (785 °F), the face-centered...
Abstract
This article discusses the physical metallurgy of cast cobalt alloys with an emphasis on the crystallography, compositions, phases and microstructure, and properties. Cobalt alloys are cast by several different foundry methods. The article describes the argon-oxygen decarburization and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys.
1