Skip Nav Destination
Close Modal
By
Curtis W. Hill, Yong Lin Kong, Hayley B. Katz, David H. Sabanosh, Majid Beidaghi ...
Search Results for
solid polymer electrolyte fuel cell
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 86 Search Results for
solid polymer electrolyte fuel cell
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... or rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging...
Abstract
Batteries and fuel cells are popular forms of portable electrical energy sources. This article discusses the operation and corrosion problems inherent in batteries and fuel cells. Batteries are classified into two groups: primary or nonrechargeable batteries and secondary or rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging of lead-acid batteries, PAFCs, and MCFCs.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004136
EISBN: 978-1-62708-184-9
.... The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs. corrosion long-term degradation fuel cells alkaline fuel cells phosphoric acid fuel cells molten carbonate fuel cells solid oxide fuel cells electrolytes polymer...
Abstract
This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells (SOFCs). The article explains the corrosion processes in fuel cells due to solid-gas interactions, solid-liquid interactions, and solid-solid interactions. It discusses the long-term performance stability and long-term degradation processes of PEMFCs, MCFCs, and SOFCs. The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
...-temperature fuel cells high-temperature fuel cells electrochemical reactions fuels oxygen polymer electrolyte alkaline phosphoric acid molten carbonate fuel cells solid oxide fuel cells FUEL CELLS are electrochemical devices that convert the chemical energy of a reaction directly into electrical...
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Image
Published: 01 January 2006
Fig. 4 Fuel cell system including auxiliary equipment. (a) Fuel cell power generation system incorporating fuel processor, fuel cell stack, and power conditioner. ATR, autothermal reforming; SMR, steam methane reforming; POX, partial oxidation; PEM, polymer electrolyte membrane; DFC, direct
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
... ) Determination of uranium and plutonium assays in nuclear fuel ( Ref 14 , 15 ) Electrochemical Cells The basic process of an electrochemical reaction requires an electrochemical cell comprised of two half cells with an electrode (cathode and anode) that are in a medium (electrolyte) that can conduct...
Abstract
This article describes various methods of electrochemical analysis, namely coulometry, electrogravimetry, voltammetry, electrometric titration, and nanometer electrochemistry. The discussion covers the general uses, sample requirements, application examples, advantages, and limitations of these methods. Some of the factors pertinent to electrochemical cells are also provided. In addition, the article provides information on various potentiometric membrane electrodes used to quantify numerous ionic and nonionic species.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... to the type of power (different voltage or alternating current) required. There are four basic types of fuel cells, which are specified by the type of electrolyte used: acid, aqueous alkaline, molten carbonate, and solid oxide. The latter two use ceramics (LiAlO 2 and Y 2 O 3 -ZrO 2 , respectively...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... salt-spray by severe turbulent ow often leads to cavi- nary ocean water. test. tation damage. brittle fracture. Separation of a solid accom- cavitation corrosion. Material deterioration in- panied by little or no macroscopic plastic de- cathode. The electrode of an electrolytic cell at volving both...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
... of polymeric nanofiber at a higher production rate. The Nanospider can process a broad range of polymers with fiber diameters of 50–300 nm spun into nonwoven webs ( Ref 47 , 48 ). Even though this method could scale up the electrospinning process successfully, optimized factors that have resulted...
Abstract
This article discusses electrospinning as a method for obtaining nanofibers, some of the challenges and limitations of the technique, advancements in the field, and how it may be used in key functional applications. The key drawbacks of traditional electrospinning processes include relatively slow speed of nanofiber production, low product yield, and relatively high cost. The article also addresses novel high-throughput techniques and methods designed for the scalable synthesis of nanofibers and nanofibrous mats that are of reasonable cost.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
... , 23 . Reprinted by permission from Springer Polymer modifiers can be introduced to the electrolyte that adsorb on the reactive surface of the conversion coating for the purpose of creating a transition layer for subsequent polymer bonding ( Ref 23 ), see Fig. 6 and 7 . Such additions...
Abstract
This article discusses the properties of aluminum surface and the applications of aluminum alloys. It explains the effects of trace elements on aluminum alloys. The article considers microstructural development of aluminum in terms of the surface and explains how it will impact corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram for aluminum under atmospheric and dynamic conditions. The article also explains the polarization effects during the formation of stable aluminum oxide under dynamic conditions. It concludes with information on the designation system for aluminum finishes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004100
EISBN: 978-1-62708-184-9
..., and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. Predicting corrosion performance in these applications is difficult because of the variety...
Abstract
This article describes the various environments affecting corrosion performance, corrosion protection, and corrosion control. These include freshwater environments, marine environments, and underground environments. The article provides information on corrosion in military environments and specialized environments, representing less-well-known environments with more limited applications.
Book Chapter
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006980
EISBN: 978-1-62708-439-0
... electrolytes, such as self-healing PEO-based electrolytes; solid-state ceramic electrolytes, such as lithium-aluminum-germanium phosphate and lithium-lanthanum-zirconium oxide; and hybrid ceramic-polymer solid-state electrolytes, such as polyvinylidene fluoride-co-hexafluoropropylene/Pyr13TFSI/LiTFSI/TiO 2...
Abstract
Additive manufacturing (AM) has been adopted as one of the most versatile and rapid design-to-manufacturing approaches for printing a wide range of two- and three-dimensional parts, devices, and complex geometries layer by layer. This article provides insights into the current progress, challenges, and future needs of AM of electronics from the space, defense, biomedical, energy, and industry perspectives.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
... to 540 °C (1000 °F) Oxide ceramics—lanthanum (La 0.8 Sr 0.2 )0.98 MnO 3 (provided in mol%) Agglomerated and sintered High-purity Perovskite Used as an evaporation barrier on chromite-based solid oxide fuel cell (SOFC) interconnects and for catalysts and sensors Service up to 1500 °C (2730 °F...
Abstract
This article discusses three types of powder-feeder systems that are commonly used throughout the thermal spray (TS) industry: gravity-based devices, rotating wheel devices, and fluidized-bed systems. It provides information on the various mechanical methods for producing powders, namely, crushing, milling, attriting, and machining. The article describes two prime methods of agglomeration. One method uses a binder by way of agglutination, while the other relies on a sintering operation. The article discusses the technology and principles of the processes that relate to thermal spraying, and offers an understanding for choosing particular feedstock materials that are classified based on the thermal spray process, material morphology, chemical nature of the material, and applications. Sieving, the most common method of separating powders into their size fractions, is also reviewed. The article also provides information on the topical areas and precautions to be undertaken to protect the operator from safety hazards.
Book
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... the surface of a metal, when anodic, is converted to a coating having desirable protective, decorative, or functional properties. anolyte. The portion of electrolyte in the viciuity of t:Ite anode; in a divided cell, the portion of electrolyte on the anode side of the diagram. antioxidant. Any additive...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003637
EISBN: 978-1-62708-182-5
... involved by virtue of chemical compounds consumed and the products produced during the course of their metabolism. A large percentage of them can form extracellular polymeric materials termed simply polymer , or slime. The slime is involved in attaching the organisms to the surface, trapping...
Abstract
This article focuses on the effects of microscopic organisms and the by-products they produce on the electrochemical corrosion of metals. The general characteristics of the microorganisms that facilitate their influence on the electrochemistry of corrosion are discussed. The industries most often reported as being affected by microbiological corrosion are listed, along with the organisms usually implicated in the attack. The article explains that the influence of organisms can be addressed successfully for a corrosion control program by using four types of evidence: metallurgical, microbiological, chemical, and electrochemical. It provides information on the microbiologically influenced corrosion (MIC) of irons and steels, passive alloys (austenitic stainless steels), aluminum alloys, copper alloys, and composites. The article reviews the formation of microbial biofilms and macrofouling films. It also describes the general approaches taken to prevent MIC.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... surfaces. Humidity levels above 60% lead to formation of thin aqueous electrolyte films capable of creating local corrosion-reaction cells with increased corrosion rates. Cyclical occurrence of condensate contaminated with dissolved salts and atmospheric impurities followed by dry-off in high-temperature...
Abstract
This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article provides information on the inspections steps, corrosion-control issues, and corrosion-prevention strategies for naval aircraft. It contains a table that lists typical locations of corrosion on the aircraft. The article also provides examples of aircraft corrosion damage.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004170
EISBN: 978-1-62708-184-9
.... It is commonly associated with noble metal coatings such as gold and silver on copper and nickel. The ultrathin and often porous noble metal coatings can leave the substrate exposed to the surface electrolyte film. The galvanic cell potential between the noble coatings and the less-noble substrate will initiate...
Abstract
This article discusses the influence of the materials, design, package type, and environment on corrosion in microelectronics. It describes the common sources and mechanisms of corrosion in microelectronics, including anodic, cathodic, and electrolytic reactions resulting in uniform corrosion, galvanic corrosion, pitting corrosion, creep corrosion, dendrite growth, fretting, stress-corrosion cracking, and whisker growth. The article presents effective measures for minimizing the moisture retention in hermetic packages and/or moisture ingress in plastic packages. It concludes with information corrosion tests.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
... and nitrate, from the medium Producing corrosive metabolites Establishing microcenters for galvanic activity, including oxygen concentration cells Removing electrons directly from the surface of the metals Several investigators reported a decrease in bulk fuel pH due to metabolites produced...
Abstract
This article focuses on microbiologically influenced corrosion (MIC) of military assets. It discusses the mechanisms of MIC in hydrocarbon fuels and atmospheric, immersion, and buried environments with specific examples. The article describes the behavior of metals and alloys, namely, copper alloy, nickel alloy, titanium and titanium alloys, aluminum alloys, stainless steels, and carbon steel in immersion environments.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006013
EISBN: 978-1-62708-172-6
... environment is particularly corrosive to carbon steel. Corrosion rates in excess of 1270 μm (50 mils) per year have been reported ( Ref 1 ). These high corrosion rates can be attributed to the fact that saltwater makes an excellent electrolyte, a principal component of the corrosion cell. The life cycles...
Abstract
This article focuses on marine coatings associated with protecting commercial and military vessels. It provides detailed information on the common issues and requirements encountered when coating ballast tanks, freeboard, topside, and decks of the vessel. The article describes the advent of ultra-high solids coatings technology, and reviews the marine-specific coatings such as antifouling and their mechanisms and common failure modes.
1