Skip Nav Destination
Close Modal
By
Charles D. Nelson, Wayne Rasmussen, John Jorstad
By
Tito Andriollo, Nikolaj Vedel-Smith, Jesper Thorborg, Jesper Hattel
By
Itsuo Ohnaka
By
Geoffrey Sigworth
Search Results for
solid molds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 977
Search Results for solid molds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005296
EISBN: 978-1-62708-187-0
... such as near-net shape casting, tundish metallurgy, and pouring stream protection. The article discusses the use and capabilities of different molds for steel continuous casting, including thin-wall tube-type molds, solid molds, and plate molds. The article explains the methods for enhancing productivity...
Abstract
The purpose of continuous casting is to bypass conventional ingot casting and to cast to a form that is directly rollable on finishing mills. The use of this process has resulted in improvement in yield, surface condition, and internal quality of product when compared to the ingot-made material. This article outlines the advantages of steel continuous casting, along with its developments and challenges for improvement. It provides a general description of the continuous casting process and the design and layout of a continuous casting steelmaking facility. It reviews process enhancements such as near-net shape casting, tundish metallurgy, and pouring stream protection. The article discusses the use and capabilities of different molds for steel continuous casting, including thin-wall tube-type molds, solid molds, and plate molds. The article explains the methods for enhancing productivity and improving quality in steel continuous casting. It evaluates the applications of horizontal continuous casting in casting steel. The article concludes by outlining priorities for future development such as enhanced control systems and automation.
Image
Published: 01 December 2008
Book Chapter
Casting Design and Processes
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... 6000 years), while the lost foam process has been used commercially for less than 20 years. Permanent mold processes involve the use of metallic (usually ferrous) or solid graphite molds. On a volume basis, die casting and permanent mold casting are the most important. Sand Molds SILICA SAND...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
.... Fig. 2 Solidification in conventional castings. During the growth of the columnar zone, three regions can be distinguished. These are the liquid (L), the liquid plus solid (the so-called “mushy” zone), and the solid (S) regions. The fact that the grains most favorably oriented to the mold...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... and that the mold is destroyed to recover the casting. Related processes, in which ceramic slurries are poured against permanent patterns to make cope and drag molds, are covered in the article “Slurry Molding” in this Volume. There are two distinct processes for making investment casting molds: the solid...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book Chapter
Slurry Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
..., or into a core box, where it sets, forming a solid mold or core composed of gypsum with free water distributed throughout the plaster mold. The next stage is to dry the plaster in an oven to remove the excess water. The drying temperature depends on the plaster molding process. If partings and waxes are used...
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Book Chapter
Internal Casting Stresses and Dimensional Stability
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
... totally free, meaning that a combination of deformation and internal stress develops during solid-state cooling. As shown in Fig. 1 , the constraints that hinder thermal contraction are normally classified as either external or internal ( Ref 3 ). The first type typically refers to the action of the mold...
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
...-assisted consolidation reciprocating-screw machines sintering atmosphere solid state sintering tool design tooling THE PROCESS OF POWDER INJECTION MOLDING (PIM), of which metal injection molding (MIM) is the dominant segment, was first practiced in the U.S.A. in the early 1920s in the form...
Abstract
This article describes part selection, feedstock (powders and binders) characteristics and properties, tool design, and material and tooling for fabrication of metal powder injection molding (MIM) machines. It discusses the process parameters, operation sequence, molding machines, debinding techniques, consolidation (sintering) techniques, advantages, and limitations of MIM.
Book Chapter
Practical Issues in Computer Simulation of Casting Processes
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005239
EISBN: 978-1-62708-187-0
.... Fig. 3 Boundary condition for a gravity casting. ρ, melt density; g , acceleration of gravity Although the correct boundary condition on the mold wall is a nonslip condition (i.e., the fluid velocity at a solid boundary is zero), even slip conditions usually result in similar simulation...
Abstract
This article illustrates the simulation procedure of casting process. It describes important elements and points of the simulations. These include the setting of clear simulation objectives, selection of proper simulation code, hints in modeling of shape and phenomena, initial and boundary conditions, physical properties, enmeshing, and evaluation of simulation results. The article also provides some insights into the application of models to real world problem for foundry process engineers.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005275
EISBN: 978-1-62708-187-0
... with continuing research and development ( Ref 3 ). In contrast to billet and slurry casting techniques, Thixomolding is a semisolid injection molding process ( Ref 4 ) that has the virtue of permitting the production of parts over a wide range of solid fractions, f s , nominally of the order 0.05 to 0.60...
Abstract
Thixomolding is a method of molding thixotropic semisolid magnesium alloy pellets in a machine that resembles an injection molding machine in physical appearance and operation. This article describes the process of thixomolding. The use of hot sprues and hot runners in the thixomolding is discussed. The article provides information on thixoblending and summarizes results from two independent studies of the mechanical properties of recycled AZ91D. It also describes the factors on which the mechanical properties depend and illustrates microstructures of semisolid thixomolded AZ91D.
Image
(a) Tensile and yield strength and (b) elongation as a function of the cool...
Available to PurchasePublished: 31 August 2017
with a 3 mm (0.12 in.) wall thickness. Solid curve: casting obtained using chemically bounded sand mold; dotted curve: casting obtained using LDASC mold. Source: Ref 6
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005223
EISBN: 978-1-62708-187-0
... tearing. Fluidity Fluidity is usually defined as the maximum fluidity length, which is the distance a melt will flow in a standard mold with a constant cross section before the flow is terminated by solidification. It should be noted that this is different from a physicist's definition of fluidity...
Abstract
Castability of alloys is a measure of their ability to be cast to a given shape with a given process without the formation of casting defects. This article describes the factors that limit fluidity as well as experimental methods for measuring fluidity of various alloys. Various tests designed for measuring the hot tearing tendency in alloys are discussed. The article also discusses the temperature dependence, criteria, and modeling of hot tearing.
Book Chapter
Hand Lay-Up, Spray-Up, and Mechanical Lay-Up
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003036
EISBN: 978-1-62708-200-6
... ), which is then cast, machined, or nickel-electroformed. Fig. 7 Formed sheet metal mold and attached substructure A major goal in tool design is to prevent deflection of the controlled surface. Solid molds are size limited because of handling considerations. Thus, support structure schemes...
Abstract
Wet lay-up using hand or spray techniques is one of the simplest methods of combining a fiber reinforcement with a solidifying resin to form a composite structure. This article describes several wet lay-up processes - including contact molding, spray molding, vacuum bag molding, and autoclave molding - suited for making parts on open-faced molds using polyester and vinyl ester resins. The article also provides information on mechanically assisted lay-up which can be automated to alleviate some of the manual work.
Book Chapter
Rotational Molding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003017
EISBN: 978-1-62708-200-6
... 0.020 in.) in diameter. Thus, to be used for rotational molding, solid plastic resins must be powdered by grinding or other means. If a resin, such as polypropylene (PP), is difficult to grind, then more expensive techniques, such as cryogenic grinding, may be necessary. Descriptions of the plastic...
Abstract
Rotational molding is a simple but unique process that has the capability of producing small to large hollow items with very uniform wall thicknesses. Providing an overview of the operating principles of rotational molding, this article discusses the key selection factors, including function and property requirements for resins and additives; size, shape, design, and cost of molded parts; equipment type and size; and the type of mold to be used. Commonly used molds include cast aluminum, fabricated sheet metal, nickel deposit, machined aluminum, silicone, fiberglass, and prototype molds.
Book Chapter
Solidification and Castability of Foundry Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006496
EISBN: 978-1-62708-207-5
... increases to 40 °C (72 °F) at the faster cooling rate. This is because there is less time for zinc to diffuse into the solid, as can be shown by calculations using Eq 3 . This also explains why most 7 xx alloys are usually not good candidates for permanent mold castings and are produced instead in sand...
Abstract
Castability is a complex characteristic that depends on both the intrinsic fluid properties of the molten metal and the manner in which the particular alloy solidifies. This article discusses the practical aspects of solidification important to aluminum foundrymen. The primary focus is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range of a number of important alloys. It concludes with a discussion on castability of 2xx, 3xx, 4xx, 5xx, and 7xx alloys.
Book Chapter
Injection Molding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003014
EISBN: 978-1-62708-200-6
... and from which it can then be removed. In thermoset injection molding, a reacting material is forced into a generally warm mold in which the material further polymerizes or cross-links into a solid part. Molding Compounds Injection-molding compounds are thermoplastic or thermosetting materials...
Abstract
Injection molding is a process of forcing or injecting a fluid plastic material into a closed mold. The process generally has the advantages of being more readily automated and of permitting finer part details. Injection-molding compounds are thermoplastic or thermosetting materials and their composites that are specifically formulated for the injection-molding process. This article discusses the injection molding process, which includes the two basic categories of thermoplastic and thermoset injection molding, and lists the common thermoplastic and thermoset molding compounds and applications. It also describes the operation of the different types of injection molding machines as well as mold design and process controls. The article also describes the selection of injection-moldable thermosets, and provides an overview of part performance, properties, blowing agents, and aesthetic concerns related to thermoplastic structural-foam injection molding.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... is critical to the accuracy of the final casting. A number of dimensional changes occur during the investment casting process. When wax is injected into the mold, it contracts upon solidification. When the ceramic shell or solid molds are heated for dewaxing and firing, expansion of the cavity occurs. Finally...
Abstract
Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... with phenolic novolak resins has excellent resistance to moisture absorption and remains free-flowing. Phenolic resins used in shell molding are: Novolak varnishes with 60 to 70% solids Water-borne novolaks with 75 to 80% solids Flake and lump resins Novolak varnishes are only slightly...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
1