Skip Nav Destination
Close Modal
By
David Neff, Geoffrey Sigworth, Rafael Gallo
By
Daniel E. Groteke, David V. Neff
By
Wesley Wang, S. Liu
By
D.L. Olson, S. Liu, R.H. Frost, G.R. Edwards, D.A. Fleming
By
S. Liu, S.D. Brandi, R.D. Thomas, Jr.
By
A. Rabinkin
By
S.D. Brandi, S. Liu, J.E. Indacochea, R. Xu
Search Results for
solid fluxes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 727
Search Results for solid fluxes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... Abstract Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
Book Chapter
Melting and Melt Treatment of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
... Abstract There are a wide variety of furnace types and designs for melting aluminum. This article discusses the various types of furnaces, including gas reverberatory furnaces, crucible furnaces, and induction melting furnaces. It describes the classification of solid fluxes: cover fluxes...
Abstract
There are a wide variety of furnace types and designs for melting aluminum. This article discusses the various types of furnaces, including gas reverberatory furnaces, crucible furnaces, and induction melting furnaces. It describes the classification of solid fluxes: cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article reviews the basic considerations in proper flux selection and fluxing practices. It explains the basic principles of degassing and discusses the degassing of wrought aluminum alloys. The article describes filtration in wrought aluminum production and in shape casting. It also reviews grain refinement in aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article concludes with a discussion on aluminum-silicon modification.
Image
Comparison of the effectiveness of solid degassing flux versus nitrogen pur...
Available to PurchasePublished: 01 December 2008
Fig. 21 Comparison of the effectiveness of solid degassing flux versus nitrogen purging. Source: Ref 18
More
Image
Comparison of the effectiveness of solid degassing flux versus nitrogen pur...
Available to PurchasePublished: 01 December 2008
Fig. 18 Comparison of the effectiveness of solid degassing flux versus nitrogen purging. Source: Ref 21
More
Image
Interactions between flux ingredients. The solid arrows represent negative ...
Available to PurchasePublished: 31 October 2011
Fig. 8 Interactions between flux ingredients. The solid arrows represent negative interactions, and the dashed arrows represent positive interactions.
More
Image
Flux density in and around solid conductors of the same diameter. (a) Nonma...
Available to PurchasePublished: 01 August 2018
Fig. 8 Flux density in and around solid conductors of the same diameter. (a) Nonmagnetic conductor (μ = 1.0) carrying direct current. (b) Ferromagnetic conductor (μ > 1.0) carrying direct current. (c) Ferromagnetic conductor (μ > 1.0) carrying alternating current. See text for discussion.
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
...: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
..., solid-metal (or cored) consumable-wire or strip electrode and the workpiece. The arc is maintained in a cavity of molten flux or slag, which refines the weld metal and protects it from atmospheric contamination. Alloy ingredients in the flux may be present to enhance the mechanical properties and crack...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001401
EISBN: 978-1-62708-173-3
... contaminants, as well as loss of the flux vehicle, must be monitored to minimize defects in the final product. Specific gravity is used to indicate flux condition. Low-solids fluxes are gaining popularity as a “no-clean” alternative to rosin-base fluxes, including their use in wave soldering. The low...
Abstract
This article focuses on the design considerations and process parameters critical to the successful implantation of wave soldering on printed circuit boards. The design considerations include the through-hole technology and the surface-mount technology. The article presents information on process parameters, which can be divided into three groups: the fluxing operation, solder wave properties, and process schedule. It provides information on various solder defects.
Book Chapter
Dross, Melt Loss, and Fluxing of Light Alloy Melts
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
... fluxing does not reduce dross; in fact, it increases dross! The principal function of gas fluxing is hydrogen removal, not dross treatment or recovery (see the article “Aluminum Fluxes and Fluxing Practice” in this Volume). In-Furnace Treatment with Solid Fluxes Once formed on the surface...
Abstract
Dross, which is the oxide-rich surface that forms on melts due to exposure to air, is a term that is usually applied to nonferrous melts, specifically the lighter alloys such as aluminum or magnesium. This article describes dross formation and ways to reduce it, the economic implications of dross, and in-plant enhancement or recovery of dross. It discusses the influence of the melter type on dross generation and the influence of charge materials and operating practices on melt loss. Fluxing is a word applied in a broad sense to a number of melt-treating methods. The article also discusses the in-furnace treatment with chemical fluxes.
Book Chapter
Permanent Magnet Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003154
EISBN: 978-1-62708-199-3
... Abstract Premanent magnet refers to solid materials that have sufficiently high resistance to demagnetizing fields and sufficiently high magnetic flux output to provide useful and stable magnetic fields. Permanent magnet materials include a variety of alloys, intermetallics, and ceramics...
Abstract
Premanent magnet refers to solid materials that have sufficiently high resistance to demagnetizing fields and sufficiently high magnetic flux output to provide useful and stable magnetic fields. Permanent magnet materials include a variety of alloys, intermetallics, and ceramics. This article discusses the composition, properties, and applications of permanent magnetic materials, such as hysteresis alloys used in motors. It primarily focuses on the stability of magnetic fields that influences reversible and irreversible losses in magnetization with time, and the choice of magnet material, component shape and magnetic circuit arrangement.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... Base materials and finishes Solder joint design Solderability testing Additional information about the soldering processes discussed in this article can be found in the Section “Solid-State Welding, Brazing, and Soldering Processes” in this Volume. Solders and Fluxes Solders...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... of thermodynamics and depends on the surface and interfacial energies involved at the liquid/solid interface ( Fig. 5 ). The rate of wetting (that is, how rapidly the solder wets and spreads) is governed by the thermal demand of the system, the ability of the heat source to supply heat, the efficacy of the flux...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Image
(a) Circular heat source on surface of stationary body. (b) Uniform band he...
Available to PurchasePublished: 31 December 2017
Fig. 2 (a) Circular heat source on surface of stationary body. (b) Uniform band heat supply on surface of semi-infinite solid. (c) Square heat source with uniform heat flux distribution. (d) Circular heat source with parabolic heat flux distribution. (e) Elliptical heat source with uniform
More
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
... by: The presence of oxide fluxes that dissociate in the arc The slag-metal reactions in the weld pool The oxides on the surface of baked metallic powders mixed with flux or on electrode The aspiration of atmosphere (air) into the arc. Lubricants on solid and composite (metal cored and flux cored) wires...
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
... Abstract Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing...
Abstract
Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing hardenability, promoting porosity, and producing inclusions. It proposes basicity index for welding as a measure of expected weld metal cleanliness and mechanical properties. The article discusses alloy modification in terms of slipping and binding agents, slag formation, and slag detachability. It reviews the types of fluxes for different arc welding processes, such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Book Chapter
Electroslag and Electrogas Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
.... Electrogas welding is a method of gas-metal arc welding (if a solid wire is used) or flux-cored arc welding (if a tubular wire is used), wherein an external gas is supplied to shield the arc and molding shoes are used to confine the molten weld metal for vertical position welding ( Ref 2 ). Electrogas...
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
... Abstract Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Book Chapter
Selection Criteria for Brazing and Soldering Consumables
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... the physical stage. The second stage, which normally occurs at a given joining temperature, is characterized by an intensive solid-liquid interaction, accompanied by a substantial mass-transfer through the interface with strongly uneven rates. The base material volume that immediately adjoins the liquid...
Abstract
This article focuses on the various criteria considered in the selection of product forms, joint types, solders, and filler metals for brazing and soldering of base material components.
Book Chapter
Brazeability and Solderability of Engineering Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... will occur. So it is important to decrease γ lv · cos θ and/or to increase (γ sv − γ sl ) by means of a flux, a filler metal, or a suitable brazing atmosphere. γ lv and γ sv decrease when a deoxidation reaction takes place at the liquid and solid surfaces. γ sl can be reduced by promoting a deoxidation...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
1