Skip Nav Destination
Close Modal
Search Results for
solar energy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 131
Search Results for solar energy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005708
EISBN: 978-1-62708-171-9
... wind power, hydro power, biomass and biofuels, solar energy, and fuel cells. biomass fuels corrosion protection hydro power renewable energy solar energy solid oxide fuel cells thermal spray applications wind power IN RECENT YEARS, renewable energy has continued to grow strongly...
Abstract
The use of renewable energy has grown strongly in all end-use sectors such as power, heat, and transport. This article describes thermal spray applications that improve efficiency, lower maintenance costs, and prolong operational life in the renewable energy technologies, including wind power, hydro power, biomass and biofuels, solar energy, and fuel cells.
Image
Published: 15 January 2021
Fig. 19 Schematic of nominal design of concentrating solar power system using molten salts. Solar energy is concentrated in towers, where molten salts are heated and pumped to a storage tank where they can power an electric-power-generating system (EPGS) in which thermal energy is converted
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
..., gaseous reactants are introduced in the reaction chamber, where thermal energy initiates gas phase and surface reactions. If thermodynamic conditions are favorable (see section “Physical Vapor Deposition and Related Processes” in this article), chemical reactions lead to the formation of a stable solid...
Abstract
This article focuses on transport phenomena and modeling approaches that are specific to vapor-phase processes (VPP). It discusses the VPP for the synthesis of materials. The article reviews the basic notions of molecular collisions and gas flows, and presents transport equations. It describes the modeling of vapor-surface interactions and kinetics of hetereogeneous processes as well as the modeling and kinetics of homogenous reactions in chemical vapor deposition (CVD). The article provides information on the various stages of developing models for numerical simulation of the transport phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition and reactive or ion beam etching.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
... Abstract This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing...
Abstract
This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing-internal stress, and vibration-external stress; and (4) biological influences such as microbiological, mildew, and marine fouling.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... thickness, insufficient drying or curing, and other abnormalities during application. The environmental influences that may result in deterioration are: Energy (solar radiation, heat and temperature variation, nuclear radiation) Permeation (moisture, solvent retention, chemical, and oxygen...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006920
EISBN: 978-1-62708-395-9
... as a function of the wavelength. A procedure to determine the spectral sensitivity of a material is described in ISO 21475 ( Ref 9 ). In natural solar radiation, not all wavelengths have the same irradiance. The irradiance of shorter wavelengths (with the highest-energy photons) decreases. The UVC and most...
Abstract
This article describes the processes involved in photochemical aging and weathering of polymeric materials. It explains how solar radiation, especially in the UV range, combines with atmospheric oxygen, driving photooxidation and the development of unstable photoproducts that cause various types of damage when they decompose, including the scission of carbon bonds and polymer chains. The article illustrates some of the degradation reactions that occur in different polymers and presents an overview of the strategies used to prevent such reactions or otherwise mitigate their effects.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
..., such as supercapacitors, rechargeable batteries, solar cells, mechanical-to-electric energy harvesters, field-effect transistors, photodetectors, and electrochromic devices (see Fig. 17 ) ( Ref 79 ). Fig. 17 Applications of electrospinning in electronics. LED, light-emitting diode Supercapacitors...
Abstract
This article discusses electrospinning as a method for obtaining nanofibers, some of the challenges and limitations of the technique, advancements in the field, and how it may be used in key functional applications. The key drawbacks of traditional electrospinning processes include relatively slow speed of nanofiber production, low product yield, and relatively high cost. The article also addresses novel high-throughput techniques and methods designed for the scalable synthesis of nanofibers and nanofibrous mats that are of reasonable cost.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
..., J.B.; Kumar, A.; Franklin, A.D. 2016 ACS Nano , Vol 10 (No. 5), p 5221–5229 47 49 Aerosol Jet Printed Grid for ITO-Free Inverted Organic Solar Cells Kopola, P.; Zimmermann, B.; Filipovic, A.; Myllylä, R.; Würfel, U. 2012 Solar Energy Materials and Solar Cells , Vol 107, p 252–258 26 45...
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
... and ICs. Optoelectronic devices—light-emitting diodes (LEDs), laser diodes, photodiodes, and solar (photovoltaic) cells—take advantage of the ability of GaAs to convert electrical energy into optical energy and vice versa. The principal market for optoelectronic devices is in nonmilitary applications...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006871
EISBN: 978-1-62708-395-9
... are susceptible to the effects of weather. These weather factors that contribute to degradation of plastics include heat and temperature variations, humidity and moisture variations, solar radiation, oxygen, microbiologic attack, and other environmental elements. The results of exposing plastics...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on the performance of polymeric materials, and the accelerated test methods that can be used to investigate those effects. These test methods are used to characterize material performance when subjected to specific, often controlled, and well-defined factors. The article also presents an overview of weathering instrument types that simulate outdoor stress factors.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... , June 1980 , p 96 – 109 5. Levy S.C. , Corrosion Reactions in Lithium-Sulfur Dioxide Cells , Corrosion in Batteries and Fuel Cells and Corrosion in Solar Energy Systems , Johnson C.J. and Pohlman S.L. , Ed., The Electrochemical Society , 1983 , p 9 – 16 6. Walk...
Abstract
Batteries and fuel cells are popular forms of portable electrical energy sources. This article discusses the operation and corrosion problems inherent in batteries and fuel cells. Batteries are classified into two groups: primary or nonrechargeable batteries and secondary or rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging of lead-acid batteries, PAFCs, and MCFCs.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... be controlled by blocking the invisible infrared (IR) component of the sun's spectrum with light green tinted glasses. To further reduce the solar energy transmission, the visible light transmission must also be reduced. This is done by tinting the glass in bronze, green, gray, or blue colors and then further...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003475
EISBN: 978-1-62708-195-5
..., but also solar ultraviolet radiation, temperature cycling in orbit, vacuum, condensates of volatile organic substances evaporated from spacecraft surfaces, micrometeoroid and man-made debris impacts, and high-energy radiation. The combined effects of the space environment can lead to serious deterioration...
Abstract
This article discusses composites for unmanned space vehicles and provides an overview of key design drivers, challenges, and environment for use of composites in spacecraft, launch vehicles, and missiles. It describes the design allowable properties of composite materials. The article provides information on the specific state-of-the-art applications of composite materials for spacecraft missiles and launch vehicles. A discussion on the key applications, including solid rocket motor casings, payload fairings, and payload support structures, is presented.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005607
EISBN: 978-1-62708-174-0
...; motors; battery and capacitor foils; photovoltaic panels; passive solar heaters; heating, ventilation, and air conditioning (HVAC) tubing; and many others. The advantages of ultrasonic welding include the ability to: Join metals without the heat of fusion, making it an efficient method, energy...
Abstract
Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency vibratory energy and moderate clamping forces. This article discusses the parameters to be considered when selecting a suitable welder for ultrasonic metal welding. It details the personnel requirements, advantages, limitations, and applications, namely, wire welds, spot welds, continuous seam welds, and microelectronic welds of ultrasonic metal welding.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006005
EISBN: 978-1-62708-172-6
... is dependent upon chemical interactions of the resin and other paint components with ultraviolet light, water, other chemicals in the atmosphere, heat and cold (energy and an energy deficiency), and combinations thereof, and their effect on the coating system. It is necessary to have a basic understanding...
Abstract
This article provides an overview of chemistry and chemical interactions necessary to understand protective coatings. It includes information on elements, atoms, molecules, types of bonding, valence electrons, functional groups, polymer formation, and chemical bonding structures.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001465
EISBN: 978-1-62708-173-3
... of the space environment is solar heat welding. Solar radiation in space is unshielded by the atmosphere. A spacecraft in low earth orbit typically receives 1.4 kW/m 2 (0.13 kW/ft 2 ) in daylight conditions. This energy can be taken advantage of by focusing the solar radiation on the workpiece through the use...
Abstract
Welding as an assembly process has become increasingly more attractive to designers of space structures because of its sufficient strength, endurance, reliability during their service lives, and ease of repair. This article reviews a variety of applications for welding in space and low-gravity environments and describes the unique aspects of the space environment. It compares the applicable welding processes, namely, electron-beam welding, laser-beam welding, and gas-tungsten arc welding and examines the metallurgy of low-gravity welds. Steps taken to ensure the continued development of welding technology in space are also discussed.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005736
EISBN: 978-1-62708-171-9
... in the recent past. The most suitable process for this application is the cold spray process, which produces fully dense, oxygen-free coatings without imparting any thermal energy to the substrate ( Fig. 2 ). The cold-gas process relies on the kinetic energy of the particles for deposition and does not involve...
Abstract
Thermal spray processes involve complete or partial melting of a feedstock material in a high-temperature flame, and propelling and depositing the material as a coating on a substrate. This article describes the properties of sprayed electronic materials, including dielectrics, conductors, and resistors, and discusses their implications and associated limitations for device applications and potential remedial measures. The article presents specific examples of electrical/electronic device applications, including electromagnetic interference/radio-frequency interference shielding, planar microwave devices, waveguide devices, sensing devices, solid oxide fuel cells, heating elements, electrodes for capacitors and other electrochemical devices.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
.... , Hinrichs J. , and Arnberg L. , Spectrochim. Acta B , Vol 66 , 2011 , p 144 10.1016/j.sab.2011.01.004 65. Venzago C. , von Campe H. , and Warzawa W. , in 11th European Photovoltaic Solar Energy Conference (Montreux), 1992 , p 484 66. Wang B. , Callahan...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006063
EISBN: 978-1-62708-172-6
... calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated...
Abstract
This article provides an overview of common analytical tools used as part of the process of providing practical information regarding the causes of a coating problem or failure. The common analytical tools include Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated environments for coating failure analysis.
1