Skip Nav Destination
Close Modal
Search Results for
soils removal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 263
Search Results for soils removal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001312
EISBN: 978-1-62708-170-2
... Abstract Zirconium and hafnium surfaces require cleaning and finishing for reasons such as preparation for joining, heat treatment, plating, forming, and producing final surface finishes. This article provides information on various surface treatment processes, surface soil removal, blast...
Abstract
Zirconium and hafnium surfaces require cleaning and finishing for reasons such as preparation for joining, heat treatment, plating, forming, and producing final surface finishes. This article provides information on various surface treatment processes, surface soil removal, blast cleaning, chemical descaling, pickling or etching, anodizing, autoclaving, polishing, buffing, vapor phase nitriding, and electroplating. Applications of these surface treatment processes are also reviewed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001222
EISBN: 978-1-62708-170-2
... Abstract Alkaline cleaning is a commonly used method for removing a wide variety of soils from the surface of metals. This article focuses on the composition, operating conditions, and test and control of alkaline cleaners, as well as equipment used and their application methods. It describes...
Abstract
Alkaline cleaning is a commonly used method for removing a wide variety of soils from the surface of metals. This article focuses on the composition, operating conditions, and test and control of alkaline cleaners, as well as equipment used and their application methods. It describes the mechanisms of alkaline cleaning, such as saponification, displacement, emulsification and dispersion, and metal oxide dissolution. The article concludes with information of the safety and environmental considerations in the usage of alkaline cleaners.
Image
Published: 30 September 2015
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... magnetic. Plain boiling water is often suitable for removing these soils, and in some plants, mild detergents are added to the water to increase its effectiveness. Steam is widely used for in-process cleaning, especially for large components. Table 1 indicates cleaning processes typically used...
Abstract
Metal surfaces must often be cleaned before subsequent operations to remove unwanted substances such as pigmented drawing compounds, unpigmented oil and grease, chips and cutting fluids, polishing and buffing compounds, rust and scale, and miscellaneous contaminants. The article describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001223
EISBN: 978-1-62708-170-2
... to be immersed are sprayed or wiped with the solvent. Ultrasonic agitation is sometimes used in conjunction with solvent cleaning to loosen and remove soils, such as abrasive compounds, from deep recesses or other difficult-to-reach areas. This reduces the time required for solvent cleaning of complex shapes...
Abstract
Solvent cleaning is a surface preparation process that can be accomplished in room temperature baths (cold cleaning ) or by condensing vapors of a solvent on a workpiece (vapor degreasing). This article provides a detailed discussion on solvents, equipment, process limitations and applications, and safety and health hazards of cold cleaning and vapor degreasing. It also includes information on control of contamination, conservation and recovery of solvent, and disposal of solvent wastes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... Abstract This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001221
EISBN: 978-1-62708-170-2
... solvent cleaning steel parts surface preparation ultrasonic cleaning unpigmented oil and grease removal vapor degreasing CLEANING PROCESSES used for removing soils and contaminants are varied, and their effectiveness depends on the requirements of the specific application. This article describes...
Abstract
This article describes the basic attributes of the most widely used metal surface cleaning processes to remove pigmented drawing compounds, unpigmented oil and grease, chips, cutting fluids, polishing and buffing compounds, rust and scale from steel parts, and residues and lapping compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines for choosing an appropriate process for particular applications and discusses eight well-known methods for determining the degree of cleanliness of the work surface.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006504
EISBN: 978-1-62708-207-5
... of the potential contaminants that can be on the surface of the aluminum and if they have had a reaction with the aluminum that will make them difficult to remove. Some of the possible and fairly common soils are: Lubricants of all kinds—animal, vegetable, mineral, and synthetic (this last type being...
Abstract
The necessary precursor to a proper and durable finish is the preparation of the active aluminum surface to receive the desired protective finish that will allow it to have a long and attractive service life. This article helps those who work with aluminum in the many varieties of applications of such products. It describes the two main categories of cleaning that can be used with most any metal, namely, mechanical cleaning and chemical cleaning. The article provides a discussion on the laboratory evaluation of cleaners, field testing of cleaners, and cleaner types and procedures. It also describes the special cleaning procedures for aluminum alloys, such as steam cleaning and rotary wire-brush cleaning. The article reviews the use of temporary coatings and the use of maintenance coatings on aluminum. It provides information on the handling and storage procedures of aluminum alloys and the cleaning of specific applications of aluminum.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001224
EISBN: 978-1-62708-170-2
... Data represent practices reported by a number of plants Part Soils removed Cleaning cycles Cleaning, time, min Subsequent operations Stable emulsion, dip cleaning Cast iron parts and machined parts Machining oil, chips Alkaline clean, emulsion clean 1 Storage Stable emulsion...
Abstract
Emulsion cleaning is an industrial cleaning process that uses an organic solvent as the main active agent. This article provides information on the applications, concerns and limitations, and process parameters of emulsion cleaning. It describes the processing variables and equipment for three main stages of emulsion cleaning: immersion cleaning, secondary cleaning, and spray cleaning. In addition, the classifications, composition, and selection criteria are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001227
EISBN: 978-1-62708-170-2
... is a process in which a solution of a mineral acid, organic acid, or acid salt, in combination with a wetting agent and detergent, is used to remove oxide, shop soil, oil, grease, and other contaminants from metal surfaces, with or without the application of heat. The distinction between acid cleaning and acid...
Abstract
This article focuses on the mineral and organic acid cleaning of iron and steel. It begins with a discussion on the application methods, process selection criteria, solution composition, equipment used, and control of process variables in mineral acid cleaning. The article then describes the advantages and disadvantages of organic acid cleaning. Applications, including boiler cleaning, stainless steel cleaning, and removal of iron- and copper-bearing deposits, are discussed. The article concludes with an overview of acid cleaning of nonferrous alloys.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
... disposal In the cleaning step, the soils are removed from the steel surface by one or a combination of three basic actions: mechanical, thermal, and chemical. Mechanical actions include abrasive surface blasting, spray jet cleaning, use of ultrasonic to loosen the dirts, hand cleaning with a brush...
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003651
EISBN: 978-1-62708-182-5
... a greater effect results from human activities of building structures, roads, electric power lines, underground utilities, landfills, farming, snow removal with salts, and so on. Characterizing a soil for its corrosivity is difficult at best. However, certain empirically derived facts are known to affect...
Abstract
This article describes the test methods for evaluating the durability of a metal in soil. It provides useful information on soil characteristics such as soil electrical resistivity, pH value, and soil texture. Specimen design, preparation, burial, and retrieval techniques are discussed. The type of information sought during soil-induced corrosion evaluation controls the design configuration and the nature of the corrosion measurements. Consideration of these factors during the planning stage helps the corrosion engineer to obtain the maximum amount of information with the minimum number of problems.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
... In the dip operation of continuous strip coating lines, alkaline cleaning is used to remove protective oils, soil, and the residues of rolling oils. Although it is possible to remove thin oxide layers using alkaline cleaning, these layers are usually removed during subsequent pickling operations...
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006030
EISBN: 978-1-62708-172-6
... hazards soil sampling visible-emission assessment water sampling THE FIRST TWO-THIRDS of this article deals with occupational health hazards related to industrial protective coating application and removal, while the last one-third covers hazards to the environment. Worker Health Hazards...
Abstract
This article discusses the occupational health hazards related to industrial protective coating application and removal. It explains the health hazards associated with coating constituents such as lead, cadmium, chromium, arsenic, silica, and asbestos. The article also discusses hazard evaluation, hazard controls, Occupational Safety and Health Administration standards, and industry consensus standards. It concludes with a description of containment systems to prevent environmental exposures from industrial paint removal projects.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... are added. In use, this type of cleaner emulsifies the oil or grease on the surface. The soil and cleaner are removed with water, preferably applied by spraying. Alkaline Cleaning Alkaline cleaning is the most widely used method for cleaning aluminum and aluminum alloys. This method is easy to apply...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Image
Published: 01 January 1994
Fig. 1 Approximate relationship of time and concentration for emulsion cleaners used to remove two different soils
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004142
EISBN: 978-1-62708-184-9
... Abstract The corrosion processes of metals during burial are affected by environmental pollutants, other archaeological material, geography, microorganisms in the soil, vegetation, land use, soil chemistry, soil physical properties, and the presence or absence of water and air. This article...
Abstract
The corrosion processes of metals during burial are affected by environmental pollutants, other archaeological material, geography, microorganisms in the soil, vegetation, land use, soil chemistry, soil physical properties, and the presence or absence of water and air. This article discusses the key environmental variables that affect the corrosion of buried metal artifacts. These include water (including dissolved salts and gases), sulfate-reducing bacteria, pH (acidity), and potential (oxidizing or reducing capacity). The article contains tables that list some corrosion products identified on archaeological tin and pewter, lead, iron alloys, silver alloys, and copper alloys. It also discusses the corrosion problems after excavation and the techniques followed by archaeological department for conserving metal artifacts.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003608
EISBN: 978-1-62708-182-5
.... Unlike dc stray-current corrosion, induced-ac corrosion cannot be mitigated by adjusting the pipe to soil potential of the pipe. It is controlled by removing the ac from the pipeline and flowing the current to earth via ground beds or zinc anodes. Prevention of Stray-Current Corrosion...
Abstract
Stray-current corrosion is an accelerated form of corrosion caused by externally induced electric current. It can occur in unprotected pipelines and submerged metal structures located near electric power sources or anywhere voltage differences exist. This article describes common scenarios and sources of stray current along with ways to detect it and prevent the type of corrosion it can cause.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally...
Abstract
Corrosion of metals is defined as deterioration caused by chemical or electrochemical reaction of the metal with its environment. This article provides information on corrosion of iron and steel by aqueous and nonaqueous media. It discusses the corrosive environments of carbon and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally induced crack propagation that results from the combined interaction of mechanical stress and corrosion reactions. The article tabulates a guide on corrosion prevention for carbon steels in various environments. It also discusses protection methods of steel from corrosion, including coatings, such as temporary protection, cleaning, hot dip coating, electroplating, thermal spray coatings, conversion coatings, thin organic coatings, and inhibitors.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004117
EISBN: 978-1-62708-184-9
... in soils. corrosion rate electrochemical impedance spectroscopy electrochemical noise electrochemical techniques linear polarization resistance corrosion behavior non-electrochemical techniques electrical resistance technique harmonic distortion analysis hydrogen permeation DESIGN...
Abstract
This article explores the use of the electrochemical and nonelectrochemical techniques for measuring the corrosion behavior of buried metals and the types of probes used. The electrical resistance technique is the main nonelectrochemical technique used for measuring corrosion rate. Electrochemical techniques discussed include linear polarization resistance, electrochemical noise, harmonic distortion analysis, electrochemical impedance spectroscopy, and hydrogen permeation. The principles of operation for the corrosion measuring techniques are described along with examples of their use in soils.
1