Skip Nav Destination
Close Modal
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
Search Results for
soft-tissue applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 120 Search Results for
soft-tissue applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... Abstract This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... in Soft Tissue Mimic and Soft Tissue Engineering Due to the soft character of hydrogels, Distler et al. ( Ref 40 ) investigated the applicability of alginate/gelatin systems for mimicking brain tissue. They were able to tune the material composition in a way that it resembled the complex mechanical...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... for tissue regeneration, and artificial organ applications, because: They are controllable in biological degradation and resorption and stimulate cell proliferation, and even genes. Some form strong bonds to hard tissue (bone) or soft tissue. They exhibit minimum foreign body reaction (implying...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... material that composes the scaffold and any potential biological agents must be selected to recreate the nature of the tissue. This section focuses on constructs with high mechanical strength, typically for engineered bone. The materials and AM processes for acellular scaffolds based on soft engineered...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
..., especially soft biorobots, have become a research focus in recent years. In contrast to traditional robots, biorobots are produced in small volumes. Therefore, piezoelectric jetting instead of mechanical assembly is suitable for their fabrication s. The soft robot is named for its soft structure; its...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... interface between the bioactive glass and both soft and hard host tissue. A disadvantage of the bioactive glasses is their low mechanical strength and low fracture toughness, which has limited their use to non-load-bearing clinical applications. A relatively soft glass originally developed by Hench et...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... bioprinting finds applications in soft/hard tissue engineering, regenerative medicine, tissue/organ transplantation, and clinical research high-throughput screening in pharmaceutical and cancer research. According to different droplet-forming principles, droplet-based bioprinting can be divided into inkjet...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... and Bio Manufacturing in Medical Applications , Springer Cham , 2021 , p 187 – 213 10.1007/978-3-030-35880-8_8 100. Kim J.E. , Kim S.H. , and Jung Y. , Current Status of Three-Dimensional Printing Inks for Soft Tissue Regeneration , Tissue Eng. Regen. Med. , Vol 13 ( No. 6...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
... it found use in repair of soft-tissue defects such as abdominal hernias. It could be formed into sheet and even fine foil, where it was found valuable in plastic and neurological surgery ( Fig. 1 ) in situations where fatigue strength was not critical ( Ref 13 , 14 ). However, in most...
Abstract
Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties of tantalum. It discusses the use of tantalum in medical electronics and the advantage of tantalum over stainless steel. The article describes the manufacturing and medical applications of tantalum foam.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
... of small cell numbers and the creation of very fine structures with high resolution. Figure 8 illustrates the direct inkjet cell-printing process and the underlying methodologies ( Ref 36 ). While both piezoelectric and thermal inkjet printing are used in soft tissue engineering applications...
Abstract
Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique as suitable for high-throughput 3D manufacturing. This article provides an overview of inkjet 3D printing (also referred to as 3D inkjetting). It then highlights the major components and accessories used in commercial and laboratory-based 3D inkjet printers. Next, the article describes the process physics of the transient phenomena involved in both binder-jetting- and direct-inkjetting-based 3D printing. It then discusses the scope and advantages of 3D inkjetting in the manufacturing of metallic, ceramic, and polymer-based biomaterials. The article also discusses several approaches and methodologies to examine the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... dissipation, and the other polymer network is soft and ductile, which can provide large shape deformation under mechanical stress. Consequently, DN biomaterials usually exhibit high mechanical strength and good elasticity. Moreover, properly designed DN biomaterials may provide both good support for cell...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues. aesthetics biocompatibility dental implants zirconia TOOTH REPLACEMENT, and the search for viable options...
Abstract
One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... extensively used in tissue engineering applications and therefore are often used as bioinks for bioprinting, due to their chemical tunability and biocompatibility ( Ref 52 – 54 ). Furthermore, several printing parameters can be adapted to the gelation kinetics of the hydrogels to tune their final structural...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... because, in the absence of micromotion, the bone will grow back to the surface without an intervening soft tissue capsule, giving the potential for better mechanical stability of the device. Early Testing and Experience with Metals in Medical Device Applications Among the pioneers in the study...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
..., in the absence of micromotion, the bone will grow back to the surface without an intervening soft tissue capsule, giving the potential for better mechanical stability of the device. Early Studies of Metal Biocompatibility Among the pioneers in the study of the tissue response to metals ( circa 1930–1960...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
..., and the ability to measure deep slots and pockets. However, they are slow, and the contact might modify or damage the surface of soft objects. Noncontact devices can scan objects without physical contact (this can be an advantage considering surgical applications in which delicate tissues are involved...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... 10 ) categorized desirable elastic modulus ranges for hard tissues (10 to 1500 MPa, or 1.5 to 218 ksi) and soft tissues (0.4 to 350 MPa, or 0.06 to 51 ksi) to promote nascent tissue formation. Advantages of Using Powder-Bed Fusion for Biomedical Applications The advantages of using PBF systems...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... metallurgy biocompatibility biomaterials dental application implant materials orthopedic application BIOMATERIALS are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. Intracorporeal uses may be for hard tissue or soft tissue replacement...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... and will spring back when the stress is released). Rubber materials are relatively soft and deformable at ambient temperatures. Their primary uses are for seals, adhesives, and molded flexible parts. Silicone is an example of a common thermoset rubber material. A thermoplastic elastomer (TPE...
Abstract
Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis and prevention. Failure analysis and prevention processes to determine the root cause of failures that arise at different stages of the product life cycle are reviewed. The article describes the mechanisms of plastic product failure analysis. It discusses the trends in the use of medical polymers, such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006404
EISBN: 978-1-62708-192-4
... ). Tissues, Ligaments, and Joints There are various tissues within the human body that form either an active or a passive tribological pair. These can be further classified as soft or hard tissues. Muscles, neurons, nerves, and connective tissues form the soft tissue group, while bone forms the hard...
Abstract
The human internal environment plays a vital role in the friction and wear of implants and prosthetic devices. This article describes the tribological/wear behavior of implants. It discusses the classification of active tribological pairs, namely, amphiarthosis joints and diarthosis joints. The article details the classification of total knee replacement, depending on the type of mechanical stability, including nonconstrained knee replacement, semiconstrained knee replacement, and constrained knee replacement. It also discusses the classifications of passive tribological pairs, namely, total disc replacement in the spine, dental implants, and temporomandibular joint. It describes the various testing methods for characterizing the implant materials used in hip, knee, spine, and dental applications. The article also describes the typical standards used for testing wear behavior of tribological pairs, namely, hip-wear simulation standards, knee-wear simulation standards, and spinal disc-wear simulation standards.