Skip Nav Destination
Close Modal
Search Results for
soft solders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 263
Search Results for soft solders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 18 Sn-30Pb alloy (soft solder). Dendrites of tin-rich solid solution (light) in a matrix of tin-lead eutectic. Figure 19 shows the structure of the eutectic. Etchant 2, Table 1 . 150×
More
Image
Published: 01 December 2004
Fig. 20 Sn-37Pb alloy (eutectic soft solder). Structure shows globules of lead-rich solid solution (dark), some of which exhibit a slightly dendritic structure, in a matrix of tin. Etchant 7, Table 1 . 375×
More
Image
Published: 01 December 2004
Fig. 22 Sn-40Pb alloy (soft solder). Structure consists of small dendrites of lead-rich solid solution (dark) in a fine matrix of globular tin-lead eutectic. Etchant 7, Table 1 . 150×
More
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general...
Abstract
This article describes the allotropic modification and atmospheric corrosion of pure tin. Corrosion of pure tin due to oxidation reaction, and reaction with the other gases, water, acids, bases, and other liquid media, is discussed. The article provides information on corrosion behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general properties and corrosion resistance of tinplate are summarized. The article also describes the methods of corrosion testing of coatings; these include an analysis of coating thickness measurements, porosity and rust resistance testing, solderability test, and specific special tests.
Image
Published: 01 December 2004
Fig. 1 Very soft metals; alloys of lead and tin. (a) and (b) A near-eutectic soft solder (63% Sn, 37% Pb; hardness, 9 HV). A globular eutectic of tin phase (light) and lead phase (dark). (c) and (d) A linotype metal (4% Sn, 12% Sb, 84% Pb; hardness, 26 HV). Primary lead dendrite in a ternary
More
Image
Published: 01 December 1998
Fig. 19 Effect of cooling rate on the microstructure of Sn-37Pb alloy (eutectic soft solder). (a) Slowly cooled sample shows a lamellar structure consisting of dark platelets of lead-rich solid solution and light platelets of tin. 375×. (b) More rapidly cooled sample shows globules of lead
More
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 9 Effect of cooling rate on the microstructure of Sn-37Pb alloy (eutectic soft solder). (a) Slowly cooled sample shows a lamellar structure consisting of dark platelets of lead-rich solid solution and light platelets of tin. (b) More rapidly cooled sample shows globules of lead-rich solid
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... of tin solders tin chemicals tin-base alloys tinplate TIN is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating for steel, that is, tinplate. In the molten state, it reacts with and readily wets most of the common metals and their alloys...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... Ag 245 473 221 430 Soldering of components for electrical and high-temperature service Tin-silver eutectic alloy B 32, Grade Sn96 QQ-S-571, Grade Sn96 … … 96 Sn, 3.5 Ag 221 430 221 430 Popular choice with properties similar to those of ASTM B 32, Grade Sn95 Soft solder (70-30...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
... the basic procedure, are shown in Fig. 1(c) to (f) . Fig. 1 Very soft metals; alloys of lead and tin. (a) and (b) A near-eutectic soft solder (63% Sn, 37% Pb; hardness, 9 HV). A globular eutectic of tin phase (light) and lead phase (dark). (c) and (d) A linotype metal (4% Sn, 12% Sb, 84% Pb...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... 0.062 “K” Monel 0.045 Inconel 0.036 Hastelloy B 0.027 Hastelloy C 0.03 Hastelloy D 0.05 Illium G 0.029 Illium R 0.031 60Ni-24Fe-16Cr 0.032 35Ni-45Fe-20Cr 0.031 Constantan 0.051 Tin and tin alloys Pure tin 0.15 Soft solder (63Sn-37Pb) 0.12 Tin foil...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
... Organization Fabrication Characteristics Joining Mechanical fasteners, adhesives, tungsten inert-gas (TIG) or metal inert-gas (MIG) welding. Solder with lead-tin solder over nickel-plated surface; acidulated zinc chloride flux. Oxyacetylene weld with alloy No. 3, no flux, soft flame. Resistance...
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... 8.4 0.30 60Ni-24Fe-16Cr 8.247 0.298 35Ni-45Fe-20Cr 7.95 0.287 Constantan 8.9 0.32 Tin and tin alloys Pure tin 7.3 0.264 Soft solder (30% Pb) 8.32 0.301 Soft solder (37% Pb) 8.42 0.304 Tin Babbitt Alloy 1 7.34 0.265 Alloy 2 7.39 0.267 Alloy 3 7.46...
Abstract
This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and rare earth metals is also listed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
..., hollow stars, rectangular ducts, and so forth. Commercially available extrusions are available from 305 mm (12 in.) pipe down to 0.25 mm (0.010 in.) diam solder wire. Lead is extruded around steel bars, as well as soft materials such as rubber- or plastic-covered power cables. Common flux-cored solders...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... Abstract Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
... (0.06% Cu, 0.045–0.055% Te, 99.82–99.85% Pb min) L51123, L51124 Copperized soft lead (0.06% Cu, 99.9% Pb min) L51125 Copper-bearing alloy (51% Pb, 3.0% Sn, other 0.8% max, bal Cu) (alloy 485 in SAE J460) L51180 Lead-indium alloys (UNS L51500–L51599) Lead-indium-silver solder alloys...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006561
EISBN: 978-1-62708-210-5
..., a welding rod of the parent alloy should be used. In general, 5–6 mm (0.2–0.25 in.) rods are satisfactory for most average-size weldments. Rivet compositions: 2117-T4, 2017-T4. Soft solder with Alcoa No. 802. Braze with Alcoa No. 717; Alcoa No. 33 flux; flame either reducing oxyacetylene or reducing...
Abstract
Alloy 308.0 is an Al-Si-Cu alloy used in sand and permanent mold casting. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of this alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006556
EISBN: 978-1-62708-210-5
... and reverse polarity (work negative). No flux is required in the inert-gas shielded-tungsten-arc AC welding process. Soft soldering can be done successfully if the proper wire and flux are used (consult manufacturers). Brazing is not recommended. Corrosion Resistance The corrosion resistance...
Abstract
This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of Al-Cu-Si general-purpose casting alloy 208.0 (aluminum alloy 2xxx).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
... … 23.0 22 100In 157 315 157 315 (a) 3.5 0.52 41 24.0 29 50In-50Pb 180 356 209 408 9.60 32.1 0.47 55 6.0 27 (a) Too soft to measure. Source: Indium Corporation of America Indium is frequently added to tin-lead solders as a ternary addition in order to depress...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
... 80Ni-20Cr … 8.4 0.30 60Ni-24Fe-16Cr … 8.247 0.298 35Ni-45Fe-20Cr … 7.95 0.287 Constantan … 8.9 0.32 Tin and tin alloys Pure tin L13002 7.3 0.264 Soft solder 30% Pb … 8.32 0.301 37% Pb … 8.42 0.304 Tin babbitt Alloy 1 … 7.34 0.265 Alloy 2...
Abstract
Density allows for the conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists the density of metals, such as aluminum, copper, iron, stainless steel, magnesium, and lead, and their alloys.
1