Skip Nav Destination
Close Modal
By
Technical Publications Committee of the Porcelain Enamel Institute, Inc., John C. Oliver, Douglas D. Giese, Jeffrey F. Wright, Ronald L. Allen ...
Search Results for
slip casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 498 Search Results for
slip casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1990
Fig. 9 Schematic of metal powder slip casting. (a) Assembled mold. (b) Filling the mold. (c) Absorbing water from the slip. (d) Finished piece, removed from the mold and trimmed. Source: Ref 7
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
... pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Image
Published: 01 November 1995
Fig. 6 Drain casting. (a) Permeable mold is filled with slip. (b) Liquid is extracted from the mold, while forming compacts along mold walls. (c) Excess slip is drained. (d) Casting is removed after partial drying. Source: Ref 22
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
..., pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties. boride cermets, carbide cermets, carbonitride cermets, cermets, cutting tools, oxide cermets...
Abstract
Ceramic-metal composites, or cermets, combine the heat and wear resistance of ceramics with the formability of metals, filling an application niche that includes cutting tools, brake pads, heat shields, and turbine components. This article examines a wide range of cermets, including oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling, pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties.
Image
Published: 01 January 1990
(special pieces) 4. Hot extrusion Aluminum cermets with moderate amounts of hard-phase additions 5. Infiltration TiC parts with nickel- or cobalt-base infiltrants and other cermets with about 55–85 vol% hard phase 6. Warm extrusion Cemented-carbide rods or other slender cermet parts 7. Slip
More
Image
Published: 01 November 1995
(slip cast) A/D-F/J/K/O/P/R/T/Q/T/U Bone china (jiggered) A/D-G/J/K/O/P/R/T/Q/T/U Steatite porcelain A/D-F/J/K/N/M/P/Q/T/U Refractory, fireclay (extruded) A-D/J/K/P/U Refractory, MgO A-D/J/K/P/U Wall tile A/I/D-F/H/E/J/M/K/P/U Glaze A/I/D-F/M Raw materials (washed clay) A/C
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002490
EISBN: 978-1-62708-194-8
... many materials are dried after milling. For slip casting, powders are usually dispersed in water or nonaqueous media resulting in a “slip,” a fluid slurry with thixotropic rheology. It is desired to have a material that flows when stirred yet maintains its shape after discharge into a mold. A clear...
Abstract
This article provides an overview of the steps that are used in ceramics processing and related mechanical design considerations. It discusses various design approaches, such as the empirical design, the deterministic design, and the probabilistic design. The article presents a general process design flowchart for ceramic processing. Information on traditional ceramics and advanced ceramics is also provided. The article describes various ceramic forming processes, such as wet processing, plastic forming, dry processing, and machining. The factors for evaluating different ceramic forming processes are summarized in a table. The article discusses vitrification and sintering that generally pertain to ceramic firing and concludes with a discussion on firing process factors.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
... the preparation procedures is converted to an agglomerated flowable powder by spray drying or to a stiff paste by filter pressing. Structural components are formed by pressing of powders, extrusion of stiff pastes, or by slip casting of slurries. In some cases, pre-sinter machining (green machining) is required...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
.... If conditions are favorable for continued propagation of cracks initiated by fretting, catastrophic failure can occur ( Fig. 1b ). As such, prevention of fretting fatigue is essential in the design process by eliminating or reducing slip between mated surfaces. Fig. 1 Effects of fretting. (a) Comparison...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000618
EISBN: 978-1-62708-181-8
... Fig. 884 Fig. 885 Fatigue fracture of cast ASTM F75 alloy (Co-28Cr-6Mo). Material was hot isostatically pressed and solution treated prior to constant force amplitude, flexural fatigue testing. Fractograph shows region of stage I fatigue, characterized by a slip/cross-slip “stair step...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of cobalt alloys (cast Vitallium and cast ASTM F75 alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fatigue fracture, microcrack, and stair-step fracture surface of these alloys.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001279
EISBN: 978-1-62708-170-2
... Abstract Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, and aluminum to improve appearance and to protect the metal surface. This article describes the types of porcelain enamels, and details enamel frits for these materials...
Abstract
Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, and aluminum to improve appearance and to protect the metal surface. This article describes the types of porcelain enamels, and details enamel frits for these materials. It provides a list of steels suitable for porcelain enameling and discusses the most important factors considered in the selection of steel for porcelain enameling. The article briefly presents the preparation methods of these materials for porcelain enameling and covers the methods, and furnaces of porcelain enameling. It examines the role of coating thickness, firing time and temperature, metal substrate, and color on the performance of enameled surfaces. The article concludes with a discussion on the properties of enameled surfaces, factors considered in process control, and test procedures for evaluating the quality of enameled surfaces.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000601
EISBN: 978-1-62708-181-8
...) Fig. 2 Slip lines in iron. Composition, in parts per million: 160 C, 40 S, 13 O, 6 N, 30 P. Rod, 13 mm (0.5 in.) in diameter, was made by vacuum induction melting, chill casting, and swaging. Heat treatment: recrystallize for 30 min at 850 °C (1560 °F), austenitize for 1 h at 1100 °C (2010 °F), air...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pure irons and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the grain-boundary cavitation; slip lines; intergranular fracture; cleavage fracture; notch-impact fracture; oxide inclusions and blowholes; ductile rupture; impact fracture and tensile-test fracture surfaces; fatigue striations; and crack initiation and propagation of pure irons.
Image
Published: 01 December 2008
precisely controlled (Source: Ref 22 ). Fatigue specimens were cycled to failure, and the fracture initiation site was characterized according to the type of defect (pore or oxide inclusion) or microstructural feature (slip plane) present at the initiation site. The graph indicates that, for these castings
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
... in a cast material. The suggestion is to use average material properties of the complex cast material microstructure. The main difference between these two processes is the change in crystallographic orientation. For slip, the crystallographic orientation will be the same after deformation, both above...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 63 Higher-magnification views from Fig. 62 showing a striated structure. The cast material was loaded monotonically, not cyclically. The striated structure is presumably due to slip band extrusions. There are many branches in the ridges, which is not typical of fatigue. (a) 770×. (b
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 63 Higher-magnification views from Fig. 62 showing striated structure. The cast material was loaded monotonically, not cyclically. The striated structure is presumably due to slip band extrusions. There are many branches in the ridges, which is not typical of fatigue. (a) Original
More
Image
Published: 01 January 2002
Fig. 13 Sheared-off cast cobalt-chromium-molybdenum screw. SEM fractography. (a) Overview of portion of rough fracture surface. (b) Area with fracture planes of three differently oriented grains (single arrow, a). (c) Shearing structures and dimples in grain identified by the numeral 1 in (b
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
... amplitude normal to the shear plane in the uniaxial case is Δσ/4. This results in a significantly lower life for a given maximum shear stress or effective stress amplitude in completely reversed uniaxial loading as compared to shear. Castings As with wrought aluminum alloys, stress raisers...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties. metallic material tensile properties solid-solution strengthening precipitation hardening dispersion...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
1