1-20 of 241 Search Results for

slip amplitude

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2000
Fig. 13 Effect of slip amplitude on fretting damage of mild steel. Source: Ref 30 More
Book Chapter

By P.H. Shipway
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006414
EISBN: 978-1-62708-192-4
..., such as fretting duration, slip amplitude, normal load, fretting frequency, contact geometry, type of vibration, and surface finish, as well as the role of environmental conditions. The article reviews the influence of an aqueous environment on the mechanism of fretting. The steps that can be taken to reduce...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions...
Image
Published: 01 January 2002
Fig. 11 Plot of normal load versus critical amplitude as a function of normal slip for a crossed steel cylinder arrangement. Source: Ref 21 More
Image
Published: 01 January 2002
Fig. 13 Plot of specific wear rate versus amplitude of slip. Each core is the result of a separate investigation More
Image
Published: 15 January 2021
Fig. 8 Schematic illustration of partial slip fretting, gross slip fretting, and reciprocation sliding conditions as a function of the displacement amplitude (e.g., sphere-on-flat contact). Adapted from Ref 43 . Reproduced with permission from P.J. Kennedy, M.B. Peterson, and L. Stallings More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude was 30–40 μm. (b) Example of catastrophic fatigue due...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Abstract This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration...
Image
Published: 01 January 2002
Fig. 12 Comparison of the theoretically predicted diameter of the nonslip region versus slip amplitude based on experimental data More
Image
Published: 31 December 2017
Fig. 9 Fretting wear versus number of cycles for mild steel with 90-μm slip amplitude in both dry air and nitrogen atmospheres. More
Image
Published: 01 January 2002
Fig. 15 Plot of fretting wear versus number of cycles for mild steel with 90 μm (0.0036 in.) slip amplitude in both dry air and nitrogen atmospheres. Source: Ref 24 More
Image
Published: 01 January 2003
Fig. 14 Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude was 30 to 40 μm. More
Image
Published: 01 January 1996
Fig. 1 (a) Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude was 30 to 40 μm. (b More
Image
Published: 01 January 2000
Fig. 1 Effects of fretting. (a) Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... chiefly depends on the displacement amplitudes and related sliding condition imposed on the interface ( Fig. 8 ) ( Ref 41 – 44 ). Fig. 8 Schematic illustration of partial slip fretting, gross slip fretting, and reciprocation sliding conditions as a function of the displacement amplitude (e.g...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002355
EISBN: 978-1-62708-193-1
... ( Ref 9 ) due to the stress-concentrating effect of the inclusion. See the section “Easy-Cross-Slip Metals (Low-Amplitude Cycling)” in this article. Nucleation at inclusions can lead either to decohesion of the inclusion-matrix interface or to cracking of the inclusion. Both of these microcracks have...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
...) hysteresis loop, the stress or strain amplitude is continuously reduced in small increments down to zero. This method is helpful in order to check whether a clip gage extensometer has slipped, because then a strain signal different from zero exists at zero load in the cyclic neutralized state...
Image
Published: 15 January 2021
Fig. 10 (a) Fretting wear damage chart as a function of the applied displacement amplitude for a cylinder-on-flat contact. Quantification of the wear volume and crack length extension as a function of the fretting regime parameter, %GS. PSR, partial slip regime; MFR, mixed fretting regime; GSR More
Image
Published: 31 December 2017
Fig. 7 Fretting maps of (a) wear rate and slip mode as a function of applied displacement; and (b) slip mode as a function of applied displacement amplitude and applied normal load. Source: Ref 25 More
Image
Published: 15 January 2021
Fig. 14 Illustration and chart of the quantification of wear rate under gross slip using the accumulated friction energy parameter for constant (CDA) but also variable (VDA) gross slip displacement amplitudes; (TiC/alumina) sphere-on-flat contact. Adapted from Ref 59 . Reprinted More