Skip Nav Destination
Close Modal
Search Results for
sliding wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 169 Search Results for
sliding wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003167
EISBN: 978-1-62708-199-3
... Abstract A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article explains the role of wear damage mechanisms in the design and selection of bearing materials, and its relationship with...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article explains the role of wear damage mechanisms in the design and selection of bearing materials, and its relationship with bearing material properties. Sliding bearings are commonly classified by terms that describe their application; they also are classified according to material construction, as single-metal, bimetal, or trimetal sliding bearings. The article further provides detailed tabular data on the designation and composition of the following types of bearing materials: tin-base alloys, lead-base alloys, copper-base alloys, and aluminum-base alloys. It also briefly discusses the following types of bearing materials: zinc-base alloys, silver-base alloys, gray cast irons, cemented carbides, and nonmetallic bearing materials.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
... such as sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue. ceramics composite restorative materials dental amalgam dental cements dental feldspathic porcelain dental materials endodontic instruments erosion fatigue fissure sealants fracture toughness...
Abstract
This article reviews the friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal Instruments, and orthodontic wires. The article describes the correlations of properties, such as hardness, fracture toughness, and wear. It discusses wear mechanism such as sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... impact wear are apparent ( Fig. 1 ). When the relative approach of the bodies contains no tangential or rotational elements, it is described as normal-impact wear. Where a shear component is added, either when normal impact occurs with a component of sliding or the bodies impact at a tangent, it is...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... Corrosive Wear Failures , Failure Analysis and Prevention , Vol 11, ASM Handbook , ASM International, 2002, p 989–994. This form of deterioration is the material removal caused by sliding of a harder, rough counterface across the target surface or by abrasive particles (rolling or grooving) in...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003030
EISBN: 978-1-62708-200-6
... wear, is provided in Ref 7 and in Friction, Lubrication, and Wear Technology , Volume 18 of the ASM Handbook. Friction and wear are inevitable when two surfaces undergo sliding or rolling under load ( Ref 7 ). The control of friction and wear is essential for both performance and...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used in friction and wear applications. It provides information on friction, types of wear, and lubrication. The article includes a brief description of the friction and wear test methods, laboratory-scale friction, and wear testing, usually performed either to rank the performance of candidate materials for an application or to investigate a particular wear process. It describes the wear tests conducted with/without abrasives and explains the concept of PV limit (where P is contact pressure and V is velocity). The article concludes with references and tables of friction and wear test data for polymeric materials.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
...), usually observed for intermediate displacement amplitudes close to the sliding transition zone, promotes a competition between wear and cracking phenomena. Fig. 9 Diagram showing the mixed fretting regime fretting log (i.e., plotting of the fretting cycle as a function of a log scale of the...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... humidity of the atmosphere. A great advantage of the pin-on-disk machine is that it enables wear to be studied under stable conditions of speed, load, and environment. If the weight or volume changes associated with wear are monitored periodically and plotted against sliding distance, a linear...
Abstract
Total joint replacement in orthopedic surgery can be achieved by excision, interposition, and replacement arthroplasty. This article details the most common materials used in total replacement synovial joints, such as metals, ceramics, and ultrahigh molecular weight polyethylene (UHMWPE). The principal physical properties and tribological characteristics of these materials are summarized. The article discusses the pin-on-disk experiments and pin-on-plate experiments for determining friction and wear characteristics. It details the use of various types of joint simulators, such as hip joint simulators and knee joint simulators, to evaluate the performance of engineering tribological components in machine simulators. The article describes in vivo assessment of total joint replacement performance.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... of wear. Thus, adhesive wear may sometimes be identified by excluding other forms of wear. For example, adhesive wear may be likely if no abrasive particles are identified, if the sliding motion is greater than that of fretting, or if corrosion reduction or oxidation do not occur. Finally, the other...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... treatments and coatings, and processing conditions ( Fig. 1 ). Fig. 1 Some aspects of forging and process design that affect wear and fracture. Source: Ref 1 Dies impose a geometry on the deforming material. The design of the die cavities governs the sliding velocities, temperature, and...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001302
EISBN: 978-1-62708-170-2
... is complex, and a wear curve provides more information and allows evaluation of more complex behavior than single-point measurement. For example, the wear behaviors of two materials in the same test are plotted as functions of the number of sliding cycles ( Fig. 1 ). Fig. 1 Wear behavior of two...
Abstract
Standardization, repeatability, convenience, short testing time, and simple measuring and ranking techniques are desirable in wear and erosion tests. This article provides a brief review of the wear testing methods and wear and erosion test equipment. General elements of a wear test, namely, simulation, acceleration, specimen preparation, control, measurement, and reporting, are reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... disk speed are controlled independently to vary slide/roll ratio Rolling + sliding Wear rate Friction coefficient Ref 22 Twin-disk testing apparatus Two crowned rings are loaded against each other’s peripheries; the rings are spun about their own axes to induce rolling/sliding; the ring...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of...
Abstract
This article begins with an overview of classes and applications of gray iron. It discusses the castability of gray iron in terms of section sensitivity and fluidity. The article provides information on the dimensions of prevailing sections recommended for gray irons and reviews the properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of normal lubrication is also discussed. The article reviews the use of alloys and heat treatment to modify as-cast properties. It concludes with information on physical properties of gray iron castings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... wear also are different. The fundamental difference between arcing contacts and sliding contacts is that sliding contacts require films on the contact faces to facilitate sliding without seizure or galling; shear must occur within this film with only minor disturbance of both materials. A lubricant...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
..., because coil stock is increasingly used to supply material to presses. Other auxiliary equipment includes lubricant applicators, stock straighteners, and levelers. THE USEFUL PERFORMANCE of a forming die is measured in terms of its wear. Total wear is affected primarily by the length of the...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... Weibull modulus X X X X X Hardness X X X X Toughness X X X X X Creep X X X X X Impact resistance X X X X Coefficient of friction X X X Wear resistance X X X Chemical Corrosion products X X X X X Corrosion rate X X X X X Oxidation...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... used to advantage in hot sizing the flat portion of the forging. The use of sliding dies requires a greater-than-normal amount of die maintenance and often presents operating problems. Forging scale can become entrapped between the sliding members, causing scoring, excessive wear, and sticking...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... classification was used in Friction, Lubrication, and Wear Technology , Volume 18 of ASM Handbook: Wear by particles or fluids Abrasive wear Polishing wear Solid particle erosion Cavitation erosion Liquid impingement erosion Slurry erosion Wear by rolling, sliding, or impact...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.