Skip Nav Destination
Close Modal
Search Results for
sliding contact
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 750
Search Results for sliding contact
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003285
EISBN: 978-1-62708-176-4
... Abstract Surface damage from sliding contact is related to the adhesion of mating surfaces in contact. This article describes the methods for evaluation of surface damage caused by sliding contact. It defines adhesive wear in terms of asperity, cold welding, galling, scuffing, seizure, and wear...
Abstract
Surface damage from sliding contact is related to the adhesion of mating surfaces in contact. This article describes the methods for evaluation of surface damage caused by sliding contact. It defines adhesive wear in terms of asperity, cold welding, galling, scuffing, seizure, and wear coefficient. The article discusses various galling testing methods, such as button-on-block galling test, pin-on-flat galling test, and threaded connection galling test. It provides an overview of fretting wear that occurs between two tight-fitting surfaces subjected to a cyclic, relative motion of extremely small amplitude. The article also reviews the fretting rig for investigating fretting wear.
Image
in Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 7 Coefficient of friction for various metals in sliding contact with single-crystal SiC {0001} surface in ultrahigh vacuum as function of total surface energy of metal in real area of contact. Vacuum pressure, 10 –8 Pa; room temperature
More
Image
in Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 9 Effect of adsorbed oxygen on friction for various metals in sliding contact with BN. Single-pass sliding; sliding velocity, 3 mm/min (0.12 in.); load, 0.05 to 0.2 N; vacuum, 30 nPa; room temperature
More
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Fig. 10 Generic sliding contact of rough surfaces. In dry conditions, mechanical sliding contact between opposing asperities is responsible for frictional heating, while in the inter-asperity voids air is entrapped. In most general lubricated conditions, only a fraction of the total heat
More
Image
in Environmental and Application Factors in Solid Friction
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Image
Published: 01 January 1994
Fig. 17 Survival of wear tests described by percentage sliding and contact stresses for surface-engineered Ti-6Al-4V. Source: Ref 16
More
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Fig. 2 Examples of the three types of tribological contact: sliding (plain bearing), mixed (gear), and rolling (ball bearing)
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 47 Effect of sliding or shear stress at the contact interface on the localization of maximum shear stress. Source: Ref 31
More
Image
Published: 01 January 1997
Fig. 7 Allowable load relationships for area-contact sliding mechanisms. (a) Cylinder in hole. Rotating cylinder; fixed partial hole; R 1 = R 2 = R. (b) Cylinder in hole. Rotating cylinder; fixed full hole; R 1 = R 2 = R. (c) Cylinder in hole. Fixed cylinder; rotating hole; R
More
Image
Published: 01 January 1997
Fig. 8 Allowable load relationships for “line”-contact sliding mechanisms. (a) Cylinder in hole. Rotating cylinder; fixed hole; R 2 < 0.99 R 1 . (b) Cylinder in hole. Rotating hole; fixed cylinder; R 2 < 0.99 R 1 . (c) Cylinder on plane. Rotating cylinder; fixed plane. (d
More
Image
Published: 01 January 1997
Fig. 9 Allowable load relationships for “point”-contact sliding mechanisms. (a) Crossed cylinders. Unequal cylinder diameters; linear oscillation parallel to axis of larger-diameter cylinder. (b) Crossed cylinders. Unequal cylinder diameters; linear oscillation parallel to axis of smaller
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006377
EISBN: 978-1-62708-192-4
... Abstract Transition metal dichalcogenides (TMD) are solid lubricant materials, specifically, intrinsic solid lubricants, whose crystal structure facilitates interfacial sliding/shear to achieve low friction and wear in sliding contacts and low torque in rolling contacts. This article provides...
Abstract
Transition metal dichalcogenides (TMD) are solid lubricant materials, specifically, intrinsic solid lubricants, whose crystal structure facilitates interfacial sliding/shear to achieve low friction and wear in sliding contacts and low torque in rolling contacts. This article provides information on sliding friction and wear behavior of unbonded, bonded, and vapor-deposited pure and composite MoS 2 and WS 2 coatings. It discusses the rolling-torque behavior and applications of vapor-deposited pure and composite MoS 2 and WS 2 coatings. The article concludes with information on various forms of TMD lubrication, namely, oils, greases, microparticle and nanoparticle additives.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006380
EISBN: 978-1-62708-192-4
... Abstract This article provides a broad overview of sliding and adhesive wear, its processes, and its control, with special attention to three general classes of materials: metals, ceramics, and polymers. It discusses the ways in which materials can be damaged and removed during sliding contact...
Abstract
This article provides a broad overview of sliding and adhesive wear, its processes, and its control, with special attention to three general classes of materials: metals, ceramics, and polymers. It discusses the ways in which materials can be damaged and removed during sliding contact. The article explains the physical and chemical nature of sliding surfaces. It presents wear equations, design criteria, and criteria for selection of materials. The article also describes the factors that affect wear performance of hybrid sliding systems. It concludes by providing general guidelines to prevent the sliding and adhesive wear in metals, polymers, and ceramics.
1