1-20 of 1296

Search Results for sintering

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
... and opportunities for that technology. The discussion includes a historical overview and covers the major steps involved and the advantages of using the binder jetting process. The major steps of the process covered include printing, curing, de-powdering, and sintering. binder-jetting curing de-powdering...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006124
EISBN: 978-1-62708-175-7
... Abstract This article discusses the pressing and sintering of various refractory metal powders for the production of intermediate products as well as special cases of finished products. The metal powders considered include tungsten, molybdenum, tantalum, niobium and their alloys, as well...
Book Chapter

By Harb S. Nayar
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006135
EISBN: 978-1-62708-175-7
... Abstract Sintering atmosphere protects metal parts from the effects of contact with air and provides sufficient conduction and convection for uniform heat transfer to ensure even heating or cooling within various furnace sections, such as preparation, sintering, initial cooling, and final...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006137
EISBN: 978-1-62708-175-7
... Abstract This article discusses the requirements for safe design, installation, operation, inspection, testing, and maintenance of sintering atmosphere generators and atmosphere supply systems for both personal and environment safety. The four intrinsic dangers associated with producing...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
... the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating. cold isostatic pressing die pressing direct powder rolling high-strength titanium alloys microwave heating powder consolidation powder...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006110
EISBN: 978-1-62708-175-7
... Abstract High-temperature sintering of ferrous components continues to be important in the powder metallurgy (PM) industry. Improvements in both production rates and properties are possible as sintering temperatures increase above 1120 deg C. This article provides an overview of the different...
Book Chapter

By Roland Warzel, III
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006111
EISBN: 978-1-62708-175-7
... Abstract This article provides information on the most frequently used atmospheres in commercial sintering of powder metallurgy iron and steel materials. These include endothermic, exothermic, dissociated ammonia, pure hydrogen, and nitrogen-base atmospheres. The article discusses sintering...
Book Chapter

By Mohamed N. Rahaman
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... Abstract Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006069
EISBN: 978-1-62708-175-7
... Abstract This article discusses two major sintering methods: pressureless and pressure-assisted sintering. Pressureless sintering techniques include vacuum and partial-pressure, hydrogen, and microwave sintering. Pressure-assisted consolidation techniques include overpressure sintering...
Book Chapter

By Peter A. dePoutiloff, Prasan K. Samal
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006118
EISBN: 978-1-62708-175-7
... Abstract This article describes the sintering behavior of austenitic, ferritic, and martensitic stainless steels. It presents different sintering schedules that are selected by Metal Powder Industries Federation (MPIF). The article provides information on the equipment and atmospheres used...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
... Abstract Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... Abstract Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... Abstract Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used...
Image
Published: 30 September 2015
Fig. 4 Sintering densification parameter versus sintering time for tungsten compacts sintered at 2100 °C (3810 °F). D s is sintered density; D g is green density; D t is theoretical density. 3N tungsten powder with particle sizes (FSSS) of 2.15 μm and 4.05 μm. Source: Ref 7 More
Book Chapter

By Bo Hu
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007027
EISBN: 978-1-62708-387-4
... Abstract This article focuses on the fractography features of the conventional powdered metal (PM) process for ferrous powders. It discusses porosity, which is one of the inherent features present in components produced by conventional press-and-sinter processes, and green cracks, which...
Image
Published: 01 August 2013
Fig. 3 Sintering of particles More
Image
Published: 09 June 2014
Fig. 25 The skull layer, formed after partial sintering during experimental melting of ZrO 2 -SiO 2 , can be seen at the bottom. More
Image
Published: 30 September 2015
Fig. 11 Schematic of pressure-assisted sintering process cycle. Source: Ref 14 More
Image
Published: 30 September 2015
Fig. 11 Final distorted shape by sintering under various gravitational environments for complicated test geometries. (a) T-shape. (b) Joint part. Source: Ref 40 More
Image
Published: 30 September 2015
Fig. 15 Effect of density distribution after die compaction on sintering and the formation of corner cracks. (a) Simulation result of green density gradients. (b) Experimental result of green compact. (c) Experimental result of sintered compact. More