Skip Nav Destination
Close Modal
Search Results for
single-tooth fatigue test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 179 Search Results for
single-tooth fatigue test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
... because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks. Failures in root fillets are primarily due to bending fatigue but can be precipitated by sudden overloading (impact). The article presents contact stress computations for gear tooth flank and bending stress computations for root fillets. Specimen characterization is a critical part of any fatigue test program because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth impact test are some of the gear action simulating tests discussed in the article.
Image
Published: 30 September 2015
Fig. 20 Single tooth bending fatigue test of AISI 8620 wrought steel and surface densified gears (alloy DM-222). Courtesy of PMG
More
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... conducted: Single tooth bending fatigue (pulsating test in a servo hydraulic testing machine), per the SAE J1619 standard Back-to-back gear testing (gears meshing under torque), as per the setup shown in Fig. 17 Figures 20 and 21 summarize the fatigue testing results. The results...
Abstract
This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information on gear tolerances and performance of PM gears. It also explains various procedures to inspect and test the mechanical properties, dimensional specifications, and surface durability (hardness).
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... tooth. Source: Ref 20 Fig. 12 In single-shot hardening of the surfaces of large sprocket teeth, a split-return inductor can be used. Source: Ref 20 Presently, tip-by-tip hardening is seldom used because the hardening patterns typically do not provide required fatigue and impact...
Abstract
Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting the metallurgy of the core. This article provides an overview of gear technology and materials selection. It describes different gear-hardening patterns, namely, tooth-by-tooth hardening, tip-by-tip hardening, gap-by-gap hardening, spin hardening, single-frequency gear hardening, dual-frequency gear hardening, simultaneous dual-frequency gear hardening, and through heating for surface hardening. It provides information on the different inspection methods based on the American Gear Manufacturers Association, revealing metallurgical data, hardness, and dimensions of gears. In addition, the article presents a comparative study on the mechanical properties of contour-hardened and carburized gears. It concludes by describing typical failures of induction-hardened steels and the corresponding prevention methods.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... tooth. Pitting initiated along and immediately above the pitchline. In some areas, the progression has been continuous. Actual size Fig. 21 Spiral pinion tooth. Near-pitchline pitting fatigue. Origin is subsurface at plane of maximum shear. 180× Third, the lowest point of single-tooth...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005868
EISBN: 978-1-62708-167-2
... for fatigue-critical applications. Alternately, the inductor can be configured to fit over a single tooth and simultaneously harden the two flanks and the tip of that single tooth. This configuration may be preferred for applications where abrasive wear of the tip is a major concern. Fig. 12 Tooth...
Abstract
Induction heat treating is used in the off-road machinery industry for hardening steel and cast iron components used in a wide range of applications. This article focuses on the usage of induction hardening components in the industry, and discusses the basic requirements of steel and cast iron to undergo induction hardening. It provides a comparison on single-shot and scan hardening methods to select the suitable one for induction heat treating of gears and sprockets. The article describes the effect of microstructure, residual stress, and workpiece position on induction hardening. It concludes with a discussion on the important factors to be considered during the installation of off-road machinery components.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
... studies with simple laboratory tests, simulation studies with customized machines, and clinical studies. Unfortunately, the fundamental laboratory tests and the simulation studies have not had much success in correlating with observed clinical wear. Fundamental Laboratory Studies In a single-pass...
Abstract
This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear mechanism such as the sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
...) include fatigue, impact fracture, wear, and stress rupture ( Table 1 ). The leading causes of failure appear to be tooth-bending fatigue, tooth-bending impact, and abrasive tooth wear. Failure modes of gears Table 1 Failure modes of gears Failure mode Type of failure Fatigue Tooth...
Abstract
This article summarizes the various kinds of gear wear, including fatigue, impact fracture, wear, and stress rupture, describes how gear life in service is estimated. It presents the rules concerning lubricants in designing gearing and analyzing failures of gears. The article presents the equations for determining surface durability and life of gears. It tabulates the situations and concepts of pitting failures in gears. The article analyzes some of the more common flaws that affect the life of gear teeth. It reviews the components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... of the many gear lubrication challenges.) Within the individual tooth contact area, the net stress is a combination of subsurface Hertzian fatigue stress and surface traction stress. Similar to the action in a rolling-element bearing, each portion of the gear tooth and the lubricant on the tooth is only...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000608
EISBN: 978-1-62708-181-8
.... Fatigue cracks from these nuclei merged to form a single crack front, which nearly penetrated the entire cross section of the throw before final fast fracture occurred. Figure 350 is another view of the surface of the fracture in Fig. 348 , photographed using illumination that reveals more...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of AISI/SAE alloy steels (4xxx steels) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, ductile fracture, impact fracture, fatigue fracture surface, reversed torsional fatigue fracture, transgranular cleavage fracture, rotating bending fatigue, tension-overload fracture, torsion-overload fracture, slip band crack, crack growth and crack initiation, crack nucleation, microstructure, hydrogen embrittlement, sulfide stress-corrosion failure, stress-corrosion cracking, and hitch post shaft failure of these steels. The components considered in the article include tail-rotor drive-pinion shafts, pinion gears, outboard-motor crankshafts, bull gears, diesel engine bearing cap bolts, splined shafts, aircraft horizontal tail-actuator shafts, bucket elevators, aircraft propellers, helicopter bolts, air flasks, tie rod ball studs, and spiral gears.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
... fatigue and bending fatigue, which only occur after a period of running time, scuffing can occur immediately upon start-up. New gears are most vulnerable to scuffing when their tooth surfaces have not yet been smoothed by running-in. For this reason, it is wise to run-in a new gearbox under one-half load...
Abstract
This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical discharge), scuffing, and Hertzian fatigue (including macropitting and micropitting). Details for obtaining high lubricant specific film thickness are presented. The article describes the selection criteria for lubricants, such as oil, grease, adhesive open gear lubricant, and solid lubricants. It discusses the applications of oil and gear lubricants and the types of standardized gear tests. The article presents some recommendations for selecting lubricants and lubricant viscosity for enclosed gear. It provides some examples of failure modes that commonly occur on gears and bearings in wind turbine gearboxes.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property...
Abstract
Residual stresses are stresses within a part that result from non-uniform plastic deformation or heating and cooling and play a vital role in ensuring long life of the induction-hardened steel parts. This article provides a description of the formation of residual stresses, and factors affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property that gets affected not only by induction hardening but also by residual stresses, quenching conditions, and grain size in the hardened condition. The article concludes with a review of induction heating or hardening in conjunction with other processing methods with examples in terms of properties and, in some cases, effects on residual stress.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000606
EISBN: 978-1-62708-181-8
... set pointing to the crack origin at left. Actual size Fig. 196 Surface of a bending-plus-torsional-fatigue fracture in an experimental 89-mm (3 1 2 -in.) diam tractor axle of AISI 1041 steel that had been induction hardened. Fracture occurred after 1212 h on an endurance-test track...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of medium-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the torsional-fatigue fracture, cup and cone tensile fracture, brittle fracture, and in-service rotary bending fatigue fracture of fractured roof-truss angles, pressure-vessel shells, automotive axle shafts, broken keyed spindles, crane gears, blooming-mill spindles, automotive bolts, and crane wheels of these steels.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
... the axis of load at either the highest point of single tooth contact (HPSTC) for the pinion or the lowest point of single tooth contact (LPSTC) for the mating gear. As a result, gear tooth failures due to contact stresses initiate at the HPSTC or LPSTC through fatigue crack initiation and subsequent...
Abstract
This article provides an overview of steel gear heat treating processes and brings out the nuances of the various important heat treating considerations for steel gear applications. The heat treatment processes covered are annealing, carburizing, hardening, low-pressure carburizing, induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... is the bending fatigue testing of single teeth in gears ( Ref 34 ). Gears are fabricated, carburized, and mounted in a fixture so that one tooth at a time is subjected to cyclic loading. Recently, identically carburized specimens of the same steel were subjected to cantilever bend and single tooth bending...
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... of a beam. Complete gear design should include determination of the following factors: Diametral pitch to provide the necessary static strength and stiffness Compressive stress at the lowest point of single-tooth contact (often referred to as Hertz stress) on the driving gear Bending stress...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
... types See review article of rolling-contact fatigue and full-scale bearing testers. 7 (i) Multiple-bearing testing apparatus ( Fig. 10 ) Deep-groove ball bearing design; typically 3000 rev/min; four bearings on a single center shaft; maximum contact stress, 2.9 GPa (420 ksi); accelerometers...
Abstract
This article discusses the physical signs of rolling-contact wear (RCW). It lists the major considerations in gear design and describes the mechanisms of RCW. The article provides a guide to rolling-contact fatigue (RCF) testing methods. It explains the steps involved in the processes of RCF and RCW.
1