Skip Nav Destination
Close Modal
Search Results for
single-pulse mode
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 330 Search Results for
single-pulse mode
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
... Abstract Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset...
Abstract
Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset welding, as well as the types of welds. The advantages include speed, ease of control, fewer defects, enhanced weld properties, simplicity of equipment, less-strict composition requirements, and ability to join difficult-to-weld materials. The article reviews the role of a homopolar generator as an alternative method for supplying the electrical current for upset welding.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
... this design eliminates the ring-down (dead-zone) effect that single-element transducers experience. (When single-element transducers are operating in pulse-echo mode, the element cannot start receiving reflected signals until the element has stopped ringing from its transmit function.) Dual-element...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... speeds. In addition to operating in a continuous and steady direct current electrode negative (DCEN) mode, the PAW process can be carried out using DCEN pulsed current, as well as in the variable polarity mode, which uses both direct current electrode positive (DCEP) and electrode negative polarity...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications of the PAW process and discusses the typical components and joints used. It concludes with information on personnel requirements and safety issues.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., the PAW process can be carried out using DCEN pulsed current, as well as in the variable polarity mode, which uses both direct current electrode positive (DCEP) and electrode negative polarity switching. The pulsed-current mode (both DCEN and DCEN/DCEP) is most often used when current levels (typically...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures, current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases are also reviewed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... in a single pass. The marking of metals is usually accomplished with Nd:YAG lasers, with average power levels ranging from 20 to 75 W. Marking can be achieved in the CW or pulsed mode. Pulse Parameters Pulse parameters, such as pulse length, frequency, and energy, vary greatly in surface modifications...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003236
EISBN: 978-1-62708-199-3
... is initiated from the transducer (typically 100 to 2000 pulses per second) Test-type or mode-selection switch to adjust instrument to pulse-echo or pitch-catch operation Sensitivity controls to adjust sensitivity or gain of the receiver-amplifier Sweep selector and delay to adjust time base...
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high-frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This article provides a detailed account of ultrasonic flaw detectors, including ultrasonic transducers and types of search units and couplants. The article describes pulse-echo and transmission inspection methods and data interpretation. The general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection are also addressed. The article concludes with a review of the advantages and disadvantages of ultrasonic inspection compared with other methods applications of the technique.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
... with the weld pool, a condition called short-circuiting transfer. Fig. 8 Droplet sizes attainable under selected current pulsing conditions in gas metal arc welding of steel. Source: Ref 4 In practical applications, the optimal transfer mode depends in part on the thickness of the base metal...
Abstract
Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting parameters for the development of welding procedures.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005565
EISBN: 978-1-62708-174-0
... requiring gas shielding Gas metal arc welding (GMAW) with short arc, spray arc, or pulsed arc modes of operation, as described subsequently Submerged arc welding (SAW) using direct current (dc), the most common, or alternating current (ac), with some operations using a number of independent arcs...
Abstract
This article describes the characteristics and technology of power sources for major arc welding methods along with the suggested criteria for assuring that a power source selection can safely deliver the desired output and yield long service life. Power sources with single-phase AC input voltage, three-phase input machines, inverter-based power sources, short arc gas metal arc welding power sources, and multiple arc power sources are discussed. The article also presents the factors to be considered when selecting a power source.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... in continuous wave (CW) mode and pulse mode. The spatial mode profile of the beam is characterized by transverse electromagnetic (TEM) mode ( Ref 19 ). There are various spatial modes that differ due to different resonator design. The Gaussian power distribution with fundamental TEM 00 (the subscripts denote...
Abstract
This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001765
EISBN: 978-1-62708-178-8
... to pulsed neutron production, and experiments are most commonly performed in the time-of-flight mode with polychromatic beams impinging on the sample, separated in energy by the arrival time. One further notable difference between reactor and spallation neutron production is the relative richness...
Abstract
Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research. It describes the instrumentation required for, and advancements made in, neutron powder diffraction. The article further explains the texture and residual stress (macrostresses and microstresses) problems that are analyzed using the neutron powder diffraction method. It also outlines the single-crystal neutron diffraction technique, and provides examples of the applications of neutron diffraction.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006474
EISBN: 978-1-62708-190-0
... a single focused ultrasonic transducer that is scanned over an area above the test object while alternately transmitting and receiving the ultrasonic signals. The transducer and the test object are immersed in a water-filled tank or coupled by a water column. The signal is pulsed so that time gating...
Abstract
Acoustical holography is the extension of holography into the ultrasonic domain. The basic systems for acoustical holography are the liquid-surface type and the scanning type. This article discusses the applications for acoustical holography, including inspection of large composite parts, through-transmission breast imaging system, inspection of welds in thick materials, and inspection of sleeve-bearing stock. It describes the basic system for liquid-surface acoustical holography and scanning acoustical holography. A comparison between these techniques is also provided.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
...-wave CO 2 laser is typically 250 to 5000 W. In the pulsed mode, lower average powers can cut metal because of higher peak instantaneous powers. The power ranges for cutting metal in the pulsed mode range from less than 100 to 2000 W for CO 2 lasers. Cutting with Nd:YAG lasers is accomplished...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
... transformer is designed with a very large iron core. Each dc pulse is limited in duration and each is reversed in polarity to prevent saturation of the core. In the majority of applications, a weld is produced by a single impulse of direct current. For heavy gages, pulsation welding is used. A series of dc...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... transfer while joining sheet metals and welding thick metals in all positions. Fig. 3 Characteristic current waveform for a “pulsing” power supply Many variations of such machines are available. The simplest provide a single frequency of pulsing (60 or 120 pulses/s) and independent control...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... settings: Shielding gas flow rate, wire feed speed, polarity, voltage, pulsing conditions Gun manipulation: Standoff distance, travel speed, travel angle, work angle, weave, welding position and progression Dependent variables: Welding current, mode of metal transfer Knowledge and control...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001741
EISBN: 978-1-62708-178-8
... , except the concentration of each species is 10 −5 mol/L. Fig. 10 Polarograms of 10 −5 mol/L Cd 2+ , Zn 2+ and Mn 2+ . A, normal pulse mode; B, differential pulse mode. Supporting electrolyte 0.1 mol/L KNO 3 . Curves A and B indicate the presence of some impurity showing a signal...
Abstract
Voltammetry is the study of the current voltage relationships observed when electroactive species in solution are subject to oxidation or reduction at electrodes under carefully controlled conditions. This article describes the basic principle of voltammetry performed using the dropping mercury electrode (polarography). It discusses the various methods of voltammetry, namely, linear sweep voltammetry, cyclic voltammetry, and stripping voltammetry that are carried out with different electrode material. The article also explores the modern instrumentation and developments achieved in voltammetry, and provides an outline of additional data, such as values of the formation, or stability, and constants of complexes formed by shifting the half-wave potential, which can be obtained by voltammetry. Additionally, the article provides a brief account of the applications of voltammetry.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006470
EISBN: 978-1-62708-190-0
..., and to provide coordination for the entire system In many cases the pulser, receiver, display, and clock are a single integrated unit that may be digital or interfaced to an external computer. Traditionally, many ultrasonic inspections used single transducers in a pulse-echo mode, while others operated...
Abstract
Ultrasonic inspection is a family of nondestructive methods in which beams of high-frequency mechanical waves are introduced into materials, using transducers, for the detection and characterization of both surface and subsurface anomalies and flaws in the material. This article describes the basic equipment in ultrasonic inspection systems, and lists the advantages and disadvantages of these systems. It discusses the applications of ultrasonic inspection and also the general characteristics of ultrasonic waves in terms of wave propagation, longitudinal waves, transverse waves, surface waves, and lamb waves. The article reviews the major variables in ultrasonic inspection, including frequency, acoustic impedance, angle of incidence, and beam intensity. It discusses the attenuation of ultrasonic beams and provides information on the pulse-echo and transmission methods for implementing ultrasonic inspection.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
.... It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
..., including the exciter heating at left, the exciter electrical cable heating at lower right, and the resonant mode shape (three faint vertical bars) heating an absorptive coating on the specimen. Vibrothermography was developed in the late 1970s ( Ref 2 ). It came into wider use in the 2000s after...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006471
EISBN: 978-1-62708-190-0
... ultrasonic waves; some examples are shown in Fig. 1 ( Ref 1 , 2 ). Conventional technologies most commonly have used single-element piezoelectric-based transducers that couple energy into a part using a couplant. This couplant can be a grease or gel in contact testing, or a large volume of fluid, commonly...
Abstract
This article discusses the advantages, disadvantages, applications, and selection criteria of various technologies and transduction modalities that can generate and detect ultrasonic waves. These include piezoelectric transducers, electromagnetic acoustic transducers (EMATs), laser ultrasound phased array transducers, magnetostriction transducers, and couplants. The article discusses four basic types of search units with piezoelectric transducers. These include the straight-beam contact type, the angle-beam contact type, the dual-element contact type, and the immersion type. The article concludes with information on immersion or contact type focused search units.
1