Skip Nav Destination
Close Modal
Search Results for
single-crystal cleavage models
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 108 Search Results for
single-crystal cleavage models
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... concepts. bending brittle fracture compression failure deformation ductile crack nucleation ductile fracture ductility fractography manufacturing imperfections metals microvoid coalescence notched specimen plastic flow root cause failure analysis single-crystal cleavage models specimen...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... is the specific surface energy of the crack faces, c is the crack length, and a is the interatomic spacing of the fracture planes. This expression becomes equal to the Griffith criterion when the crack-tip radius becomes equal to the interplanar spacing. Single-Crystal Cleavage Models It is best...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... investigation. A good example of such an occurrence is the single-event overstress fracture of a component. Although the fracture mechanism (overstress) may be obvious to investigators, critical information necessary to the broader understanding of the failure sequence may lie within the interrogation...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
... Cleavage is a transgranular brittle fracture mechanism that is characterized by low-energy fracture that propagates along well-defined, low-index, close-packed crystallographic planes known as cleavage planes. Theoretically, cleavage fracture through a single-crystal material should have perfectly matching...
Abstract
Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior of engineering materials at fracture is based on a large number of interrelated characteristics from the atomic level to the component level. These characteristics range from ductile to brittle at the microscale and macroscale levels. Fundamental relative ductility results from the type of electronic bonding, the crystal structure, and the broader long-range degree of order. It provides detailed discussion on ductile fracture, brittle fracture, mixed fracture, embrittlement, stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... related interest in quantitative assessment of load carrying capability as predicted by fracture mechanics (and vice versa). The coupling probably first became obvious when Griffith's model for brittle fracture was applied to the study of cleavage fracture in metallic materials in 1954...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006323
EISBN: 978-1-62708-179-5
... before the advent of cleavage. Cleavage takes place along the lowest-packing-density planes of a crystal because fewer bonds need to be broken and the spacing between planes is greater. In the case of body-centered cubic (bcc) crystals, as ferrite in Fe-C alloys, cleavage takes place along {100} planes...
Abstract
As cast iron parts are extensively applied, fracture events will eventually take place. Consequently, it becomes essential to carry out failure analyses to identify the cause of fracture and to provide corrective actions that allow safe operation. This article presents a description of the main fracture modes and their characteristic fractographic features. It discusses the four principal fracture modes: dimple rupture (or fracture), cleavage, fatigue, and intergranular fracture. The article provides information on special cases of environmentally assisted fracture. It concludes with a description of fractographic analyses for identifying the direction of propagation of a crack.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002349
EISBN: 978-1-62708-193-1
... the cause of cracking or crack growth. This article discusses the macroscopic and microscopic basis of understanding and modeling fracture resistance of metals. It describes the four major types of failure modes in engineering alloys, namely, dimpled rupture, ductile striation formation, cleavage...
Abstract
The cracking process occurs slowly over the service life from various crack growth mechanisms such as fatigue, stress-corrosion cracking, creep, and hydrogen-induced cracking. Each of these mechanisms has certain characteristic features that are used in failure analysis to determine the cause of cracking or crack growth. This article discusses the macroscopic and microscopic basis of understanding and modeling fracture resistance of metals. It describes the four major types of failure modes in engineering alloys, namely, dimpled rupture, ductile striation formation, cleavage or quasicleavage, and intergranular failure. Certain fundamental characteristics of fracture observed in precipitation-hardening alloys, ferrous alloys, titanium alloys are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001769
EISBN: 978-1-62708-178-8
... in Fig. 11 are from cleaved GaAs, producing a (110) surface. However, cleavage is limited to a few crystals and a few surfaces. Samples not cleaved in vacuum must be cut from a single crystal, polished, and oriented carefully to the desired surface using a Laue diffraction camera. Standard polishing...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article describes the principles of diffraction from surfaces, and elucidates the method of sample preparation to achieve diffraction patterns. The article describes the limitations of surface sensitive electron diffraction and discusses the applications of LEED with examples.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006843
EISBN: 978-1-62708-387-4
... ( Ref 44 ) ( Fig. 1b ). Such low-energy fractures are generally associated with lower fracture toughness. Theoretically, a cleavage fracture in a perfect single crystal should have matching faces and should be completely flat and featureless. However, engineering alloys are polycrystalline...
Abstract
This article presents the concept of fracture mechanisms in general terms in order to impart a practical understanding as well as enable readers to develop the ability to identify the basic fracture mechanisms correctly based on microscope observations. The key microscopic features of fracture surfaces are described and illustrated for the important types of fracture mechanisms. It provides a detailed discussion on environmentally assisted crack initiation and growth.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... in the sample. Any departure from a perfectly smooth surface, such as that caused by cleavage steps, leads to shadowing, as illustrated in the topographs of a magnesium oxide (MgO) single crystal shown in Fig. 9 , which also displays the characteristic features of a hardness impression. Fig. 8 Camera...
Abstract
X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography. The article explains various topographic methods, namely, divergent beam method, polycrystal rocking curve analysis, line broadening analysis, microbeam method, and polycrystal scattering topography, as well as their instrumentation. It also describes the applications of x-ray topography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006655
EISBN: 978-1-62708-213-6
... to ambient atmospheric contamination. The diffraction patterns shown in Fig. 11 are from cleaved GaAs, producing a (110) surface. However, cleavage is limited to a few crystals and a few surfaces. Samples not cleaved in vacuum must be cut from a single crystal, polished, and oriented carefully...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article provides a brief account of LEED, covering the principles and measurements of diffraction from surfaces. Some of the processes involved in sample preparation are described. In addition, the article discusses the limitations of surface-sensitive electron diffraction and the applications of LEED with examples.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
...), or hexagonal close-packed (hcp) (e.g., titanium, magnesium, zinc) structures as the unit cell structure. In very specific applications, materials can be used as single crystals where an entire component is fabricated with one spatial orientation repeating throughout. More often than not, however, engineering...
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001102
EISBN: 978-1-62708-162-7
... and metallurgical properties, material processing and fabrication, structural applications, mechanical behavior, environmental embrittlement, alloying effects, and crystal structure of aluminides of nickel, iron, titanium, and silicides. It describes the cleavage and intergranular fracture in trialuminides...
Abstract
Ordered intermetallic compounds based on aluminides and silicides constitute a unique class of metallic materials that have promising physical and mechanical properties for structural applications at elevated temperatures. This article provides useful information on mechanical and metallurgical properties, material processing and fabrication, structural applications, mechanical behavior, environmental embrittlement, alloying effects, and crystal structure of aluminides of nickel, iron, titanium, and silicides. It describes the cleavage and intergranular fracture in trialuminides.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002351
EISBN: 978-1-62708-193-1
... Abstract This article reviews the basic processes of fracture and fatigue and shows how these processes occur in materials. It presents an overview of the fatigue mechanisms and some related models for appropriate classes of materials, such as carbon and alloy steels, aluminum alloys...
Abstract
This article reviews the basic processes of fracture and fatigue and shows how these processes occur in materials. It presents an overview of the fatigue mechanisms and some related models for appropriate classes of materials, such as carbon and alloy steels, aluminum alloys, and titanium alloys. Microstructural factors that affect the fracture toughness of these materials, are discussed. The article describes fatigue crack propagation (FCP) mechanisms and related models. It also analyzes FCP behavior in these materials, with an emphasis on general microstructural factors.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
...• Single crack with no branching• Surface slip band emergence • Cleavage or intergranular fracture• Origin area may contain an imperfection or stress concentrator • Progressive zone: worn appearance, flat, may show striations at magnifications above 500ו Overload zone: may be either ductile or brittle...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
... on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. Although many other theories have been presented, most are variations on these basic models. Pressure Theory The pressure theory of hydrogen damage, or more specifically, hydrogen embrittlement...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results from the combined action of hydrogen and residual or applied tensile stress. This article classifies the various forms of hydrogen damage and summarizes the theories that seek to explain these types of degradation. It reviews hydrogen degradation in specific ferrous and nonferrous alloys, namely, iron-base alloys, nickel alloys, aluminum alloys, copper alloys, titanium alloys, zirconium alloys, and vanadium, niobium, tantalum, and their alloys. An outline of hydrogen damage in intermetallic compounds is also provided.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006873
EISBN: 978-1-62708-387-4
...., martensitic steels), and some hcp metals exhibit a ductile-to-brittle transition temperature (DBTT) below which brittle fracture by cleavage occurs. In contrast, metals having a face-centered cubic (fcc) crystal structure exhibit a gradual decrease in toughness with decreasing temperature ( Fig. 4 ) and do...
Abstract
This article provides practical guidance for interpreting macroscale fracture appearances. It focuses on metallic fracture features. The article covers the important distinctions between ductile and brittle fracture and the influence of the type of loading on the facture-surface orientation. It discusses both ductile fracture and brittle fracture macroscale features. Finally, it delves into fracture-initiation sites and metal-processing effects on fracture appearance, including castings, powder metals, additive manufacturing, and surface treatments.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003058
EISBN: 978-1-62708-200-6
... governs crack propagation. In single crystals and in polycrystalline materials at the microscopic level, strong cleavage tendencies also play a role, particularly in the direction of propagation. Fracture Surfaces in Various Glass and Ceramic Materials Glass Glass is an ideal material...
Abstract
Failure analysis is a process of acquiring specified information regarding the appropriateness of the design of a part, the competence with which the various steps of its manufacture have been performed, any abuse suffered by it in packing and transportation, or the severity of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created by fracture and the interpretation of the fracture markings seen on these surfaces. Details are provided for the procedures for locating fracture origins, determining direction of crack propagation, learning the sequence of crack propagation, deducing the stress state at the time of fracture, and observing interactions between crack fronts and inclusions, etc. A separate fractography terminology is provided in this article.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models. stress-corrosion cracking time-dependent crack growth crack initiation crack propagation mechanical fracture STRESS...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007038
EISBN: 978-1-62708-387-4
... Single crack with no branching Surface slip-band emergence Grain distortion and flow near fracture Irregular, transgranular fracture Brittle overload Cleavage or intergranular fracture Origin area may contain an imperfection or stress concentrator. Little distortion...
Abstract
Many metal failures involve fracture, and fractography is an essential activity in many, if not most, failure analysis (FA) investigations. This article introduces and illustrates the role of fractography in an FA investigation. Basic guidelines are briefly presented for investigating a failure and how fractography helps the FA investigator determine evidence. Examples are given throughout this article on how the examination of fracture surfaces discerns various sources of crack initiation and mechanisms of crack growth. The procedures for analyzing fractures also include several steps and techniques that involve photographic documentation, proper specimen handling, and visual or microscopic examination. The article also briefly describes the use of metallography in fracture analysis along with case studies as illustrative examples of various fracture mechanisms and modes.
1