Skip Nav Destination
Close Modal
By
James R. Ciulik, John A. Shields, Jr., Prabhat Kumar, Todd Leonhardt, John L. Johnson
Search Results for
silver-infiltrated refractory metal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47
Search Results for silver-infiltrated refractory metal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006076
EISBN: 978-1-62708-175-7
... Abstract The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements...
Abstract
The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements for infiltration, which is a technique that is only applicable to material systems that meet certain requirements. It addresses these requirements and describes the conventional (partial) infiltration process of powder metallurgy (PM) steel. The materials used in the process, such as matrix and infiltrant, are discussed. The article also details several criteria used to evaluate the performance of an infiltration process. It concludes with information on alloy steels and fully infiltrated steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006091
EISBN: 978-1-62708-175-7
... silver and copper do not alloy with tungsten, molybdenum, or their carbides, PM processes are required in fabrication. Depending on the composition, refractory metals containing silver or copper contact materials are made either by pressing and sintering or by the press-sinter-infiltrate method. When...
Abstract
Electrical contacts are made of elemental metals, composites, or alloys that are made by the melt-cast method or manufactured by powder metallurgy (PM) processes. PM facilitates combinations of metals that ordinarily cannot be achieved by alloying. This article describes the processing, properties, and performance of electrical contacts based on PM or hybrid composite technologies with refractory metals and compounds. These metals and compounds include tungsten, molybdenum, carbide-based composites, and silver-base composites. The article explains composite manufacturing methods, namely, PM methods, internal oxidation, and hybrid consolidation. The availability of the refractory metals and compounds in various product forms are also reviewed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006099
EISBN: 978-1-62708-175-7
...) are tungsten-copper, tungsten-silver, molybdenum-copper, and molybdenum-silver systems, where the solubility of refractory metals in molten metal is minimal to practically nil, but wettability is excellent. These conditions are ideal for infiltration of refractory materials and tungsten carbide. Fixed-Cutter...
Abstract
This article provides information on the infiltration mechanism of carbide structures. It reviews the basic techniques used for metal infiltration, including dip infiltration, contact filtration, gravity feed infiltration, and external-pressure infiltration. The article highlights various applications of contact infiltration in oil, gas, and blast-hole drilling such as fixed-cutter drill bits and diamond-impregnated coring bits. It also discusses the applications of infiltrated carbide material in erosion-resistant cladding.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001097
EISBN: 978-1-62708-162-7
..., namely, copper metals, silver metals, gold metals, metals of the platinum group, precious metal overlays, tungsten and molybdenum, aluminum, and composite materials. Finally, the article provides information on composite manufacturing methods, and tabulates the physical, and mechanical properties...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article provides information on materials selection criteria and failure modes of make-break contacts. It describes the property requirements for make-break arcing contacts, namely, electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties. The article presents a brief note on brush contact materials and their interdependence factors for sliding contacts. It also describes the type of commercial contact materials for electrical contacts, namely, copper metals, silver metals, gold metals, metals of the platinum group, precious metal overlays, tungsten and molybdenum, aluminum, and composite materials. Finally, the article provides information on composite manufacturing methods, and tabulates the physical, and mechanical properties of electrical contact materials, including copper, silver, gold, platinum, palladium, and composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... on load interruption. Composite Materials There are three major groups of composite materials made by P/M or internal oxidation (IO) methods, or combinations of P/M and IO: refractory metal or carbide-base, silver-base, and copper-base. Table 5 lists the various types of contact materials...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006125
EISBN: 978-1-62708-175-7
... be achieved by liquid-phase sintering (LPS) for a particular class of tungsten-base alloys known as tungsten heavy alloys (WHAs). Porous molybdenum and tungsten parts can also be infiltrated with copper or silver to produce full-density composites. In special cases, refractory metals and alloys can be hot...
Abstract
The residual porosity in sintered refractory metal ingots is usually eliminated by different densification processes, such as thermomechanical processes. This article focuses on thermomechanical processing of tungsten, molybdenum, and tantalum. It provides an overview of liquid-phase sintering of tungsten heavy alloys and describes the infiltration of tungsten and molybdenum for attaining full density. The article concludes by providing information on hot isostatic pressing of refractory metal alloys to full density.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials. copper alloy powders copper powders...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
.... In this process, a porous tungsten powder compact is placed in contact with pure copper or silver, which is then heated to its melting point. The liquid metal then infiltrates the pores of the tungsten compact. Molybdenum and Molybdenum Alloys More molybdenum is consumed annually than any other refractory...
Abstract
This article focuses on the selection, properties, and applications of powder metallurgy refractory metals and their alloys, including tungsten, molybdenum, tantalum, niobium, and rhenium.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
..., refractory cermets CERMET is an acronym that is used world wide to designate “a heterogeneous combination of metal(s) or alloy(s) with one or more ceramic phases in which the latter constitutes approximately 15 to 85% by volume and in which there is relatively little solubility between metallic...
Abstract
Ceramic-metal composites, or cermets, combine the heat and wear resistance of ceramics with the formability of metals, filling an application niche that includes cutting tools, brake pads, heat shields, and turbine components. This article examines a wide range of cermets, including oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling, pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
... Abstract This article provides information on the microstructure of powder metal alloys and the special handling requirements of porous materials. It covers selection, sectioning, mounting, grinding, and polishing, and describes procedures, such as washing, liquid removal, and impregnation...
Abstract
This article provides information on the microstructure of powder metal alloys and the special handling requirements of porous materials. It covers selection, sectioning, mounting, grinding, and polishing, and describes procedures, such as washing, liquid removal, and impregnation, meant to preserve pore structures and keep them open for analysis. The article compares and contrasts the microstructures of nearly 50 powder metal alloys, using them to illustrate the effect of consolidation and compaction methods as well as particle size, composition, and shape. It discusses imaging equipment and techniques and provides data on etchants and etching procedures.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... , and TiSi 2 ), and various proprietary materials ( Ref 78 , 79 , 80 , and 81 ). For moderate-temperature applications, both silver- and gold-based braze filler metals have been used to join CCC panels to other CCC panels and to join graphite materials to refractory metals. Typical brazing...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006017
EISBN: 978-1-62708-175-7
..., and radium containers. All of these composite materials contain refractory metal particles, usually tungsten, and a cementing material with a lower melting point, present in various proportions. Copper, copper alloys, and silver are frequently used; cobalt, iron, and nickel are used less frequently. Some...
Abstract
Powder metallurgy (PM) has been called a lost art. Long before furnaces were developed that could approach the melting point of metal, PM principles were used. This article provides an overview of the major historical developments of various methods of platinum powder production. The development of production methods took place in various phases starting from prehistoric time, post-war period, to recent and commercial period. The article discusses the powder metallurgy of platinum, as well as the commercial and post-war developments of PM. Literature and trade associations are also discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
...; refractory metals; cobalt-base alloys; and ceramic materials. aerospace equipment aluminum alloys brazeability brazed joints brazing cast irons ceramic materials chemical reactors cobalt-base alloys copper copper alloys electronic packaging engineering materials heat exchangers heat...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... of established minimum precious metal content in order to be hallmarked. Sterling silver is the most common jewelry alloy. It is defined as a silver alloy with a minimum of 92.5% Ag by mass. Thus, sterling silver jewelry is hallmarked with a symbol that includes the numerals “925,” meaning 925 parts silver...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
..., discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... infiltrated. Aluminum, magnesium, copper, and superalloys have been used as matrix materials for these castings. Fiber reinforcements include boron, graphite, silicon carbide, and refractory metals. Metals Handbook Desk Edition, Second Edition Copyright © 1998 ASM International® J.R. Davis, Editor, p 771...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001079
EISBN: 978-1-62708-162-7
...-temperature applications is done using precious metals (silver, palladium, and platinum alloys) and transition metals (nickel and manganese alloys) as filler metals. Table 10 lists typical brazing filler metals and their maximum service temperatures for all refractory metal systems. Molybdenum brazing...
Abstract
All refractory metals, except osmium and iridium, have the highest melting temperatures and lowest vapor pressures of all metals. This article discusses the commercial applications, and production procedures of refractory metals and alloys. These procedures include fabrication, machining, forming, cleaning, joining, and coatings. The article also presents information on, and specifications for, the following metals and their alloys: niobium, tantalum, molybdenum, tungsten, rhenium, and refractory metal fiber-reinforced composites. It discusses the processes involved in their production, their mechanical properties, physical properties, thermal properties, electrical properties, chemical properties, applications, and corrosion resistance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... a temperature range of several hundred degrees. At higher temperatures >700 °C, or 1290 °F), the CTE for all carbon fibers is positive. Zero-CTE metal matrix composites require the more negative CTE and very-high-modulus fibers (≥650 GPa, or 95 × 10 6 psi) that are only available in mesophase pitch-based...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
... bronze, stainless steel, nickel and nickel-base alloys, titanium, and aluminum. Materials used less frequently include the refractory metals (tungsten, molybdenum, and tantalum) and the noble metals (silver, gold, and platinum). Filters constitute one of the major applications of porous metals...
Abstract
This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four major methods for making copper and copper alloy powders, atomization and oxide reduction are presently practiced on a large scale in North America. The article provides information on the mechanism, production, properties, composition and applications of different types of copper-base P/M products, including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... are still used today in the manufacture of earthenware, stoneware, building brick, and fireclay refractories. Early development of porcelain and china was based on mixing of clay with other pulverized minerals, such as quartz, feldspar, and even bone ash. Modern refractories, wall tile, technical ceramics...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
1