1-20 of 142 Search Results for

silicon-killed steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1994
Fig. 4 Coating thickness versus immersion time for a typical silicon-killed steel galvanized at various temperatures. Source: Ref 4 More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
... and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch...
Image
Published: 01 January 1994
Fig. 6 Coating thickness versus galvanizing temperature for a typical silicon-killed steel at two different immersion times. Source: Ref 4 More
Image
Published: 01 January 1994
Fig. 15 Effect of nickel additions to the galvanizing bath. (a) Typical hot dip galvanized coating on mild steel. (b) Coating on silicon-killed steel, galvanized in bath containing nickel additions. Note the relatively thin delta layer and the thick, coarse zeta layer in (b). Both 250×. Source More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... of these steels contained tempered martensite. Source: Ref 7 Sulfur The effect of sulfur on the notch toughness of steels is directly related to deoxidation practice. For rimmed, semi-killed, and silicon-killed steels, sulfur in amounts up to about 0.04% has a negligible effect on notch toughness...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001031
EISBN: 978-1-62708-161-0
.... Consequently, there is a time limit on any performance guarantee on drawing-quality rimmed steel. Aluminum-Killed Steels Aluminum-killed steels are deoxidized with aluminum and, possibly, with silicon. As already mentioned, use of aluminum results in a very clean steel, known as aluminum-killed...
Image
Published: 01 January 1990
Fig. 13 Variation in transverse Charpy V-notch impact energy with temperature for HSLA steels containing varying amounts of sulfur. The steels were silicon-aluminum killed with a minimum yield strength of 450 MPa (65 ksi). More
Image
Published: 01 January 1990
Fig. 10 Influence of straining in tension and aging at 24 °C (75 °F) on the Charpy V-notch (half width) impact strength for three steels. (a) Steel A, silicon and aluminum killed, 0.25% C with 0.013% Al and 0.011% N. (b) Steel B, capped open hearth steel, 0.07% C with 0.005% Al and 0.005% N More
Image
Published: 01 January 1990
Fig. 14 Effect of sulfur content on transverse impact energy at room temperature in a silicon-aluminum-killed steel More
Image
Published: 01 January 1990
electric technique. (c) and (d) 0.29C-0.72Mn-0.44Si steel melted by acid open hearth technique. (e) and (f) 0.33C-0.78Mn-0.38Si steel melted by basic open hearth technique. All steels were fully silicon-aluminum killed. More
Image
Published: 01 December 1998
Fig. 39 Effect of finishing temperature on notch toughness. The 54 J (40 ft · lbf) Charpy V-notch transition temperature varies with hot-rolling finishing temperature for silicon-killed 0.24C-1.69Mn steel. More
Image
Published: 01 January 1990
Fig. 23 Effect of finishing temperature on notch toughness. The 54 J (40 ft · lbf) Charpy V-notch transition temperature varies with hot-rolling finishing temperature for silicon-killed 0.24C-1.69Mn steel. Source: Ref 10 More
Image
Published: 01 December 1998
Fig. 49 Effect of sulfide inclusions on toughness of ferritic steels. (a) Relationship between projected inclusion length per unit area and crack tip opening displacement to fracture in sulfur-bearing steels. (b) Effect of rare earth additions on impact properties of aluminum-silicon killed X More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... a residue of 0.10% can be enough of an addition to kill the steel. Killed steels are fully deoxidized during their manufacture; deoxidation can be accomplished by additions of silicon, aluminum, or both, or by vacuum treatment of the molten steel. Because it is the least costly of these methods, silicon...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001011
EISBN: 978-1-62708-161-0
... to the manufacturer for grades D through G. When silicon-killed steel is specified, a range of 0.15–0.30% Si shall be supplied. Source: Ref 1 Generally, rimmed (or capped) ingot cast steel has been used because of its lower price. More recently, these steels have been replaced by killed steels produced...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003094
EISBN: 978-1-62708-199-3
...) ingot cast steel has been used because of its lower price. More recently, these steels have been replaced by killed steels produced by the continuous casting process. This process is inherently suited to the production of killed steels. Where strain aging is to be avoided and/or when exceptional...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001013
EISBN: 978-1-62708-161-0
... casting is an important factor in improving the internal soundness and chemical homogeneity of cast steel. Deoxidation is also important in lowering the impact transition temperatures. Deoxidation can be achieved by vacuum processing or by adding deoxidizing elements such as aluminum or silicon...
Book Chapter

By R.J. Glodowski
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
...-rolled low-carbon steel rod Data obtained from rod produced with controlled cooling Steel grade Rimmed Capped Aluminum killed fine-grain steel Silicon killed fine- or coarse-grain steel MPa ksi MPa ksi MPa ksi MPa ksi 1005 350 51 … … 380 55 395 57 1006 360 52 365...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003093
EISBN: 978-1-62708-199-3
... steels contain minimal silicon, usually less than 0.05%. Fully killed steels usually contain 0.15 to 0.30% silicon for deoxidation; if other deoxidants are used, the amount of silicon in the steel may be reduced. Silicon has only a slight tendency to segregate. In low-carbon steels, silicon is usually...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003091
EISBN: 978-1-62708-199-3
... for further refining with oxygen that reduces the silicon, manganese, and carbon to acceptably low levels in the resulting steel. The steel is then tapped or poured into refractory-lined ladles. During this tapping operation, alloying elements that will determine the final chemistry of the steel are added...