Skip Nav Destination
Close Modal
Search Results for
silicon carbide fiber
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 362 Search Results for
silicon carbide fiber
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 13 Stress/strain curve for nicalon silicon carbide fiber in aluminum (1100) matrix. The material has an initial modulus ( E 1 ) of 87 GPa, which is representative of both fiber and matrix elastically deforming. The secondary modulus ( E 2 ) of 70 GPa is indicative of fiber elastic
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided. continuous fiber...
Abstract
For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003352
EISBN: 978-1-62708-195-5
.... Ceramic fibers are polycrystalline. Oxide ceramic (e.g., silica-alumina and pure alumina) fibers and nonoxide ceramic (e.g., silicon carbide) fibers ( Ref 4 ) are used to reinforce CMCs and MMCs ( Ref 5 ). Value-in-Use In a PMC, the primary function of a reinforcing fiber is to increase...
Abstract
Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC reinforcing fibers. The article describes cost-considered value-in-use of the ultimate-use temperature of selected fibers in three fiber categories: metal fibers or wires, oxide ceramic fibers, and non-oxide ceramic fibers.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC. aluminum-matrix composites copper-matrix composites intermetallic-matrix composites magnesium...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
... cross section. The fiber has high strength, high modulus, and low density, but it also has a tendency to further grain growth at high temperatures, is highly reactive with many metals, and is costly. CVD silicon carbide fibers are a recent development that show promise, and if the production cost...
Abstract
This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions of materials related to hard, tribological, and high-temperature coatings and to free-standing structures. It concludes by reviewing the advantages, disadvantages, and applications of CVD.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... Abstract This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003357
EISBN: 978-1-62708-195-5
... silicon carbide. It provides a discussion on factors that are considered in understanding thermostructural capability of ceramic fiber for high-temperature ceramic-matrix composites (CMC) applications. The article tabulates other commercial oxide and nonoxide fiber types for CMC reinforcement...
Abstract
This article focuses on the production methods, properties, and applications of two main types of commercially available continuous-length ceramic fibers, namely, oxide fibers based on the alumina-silica system and on alpha-alumina, and nonoxide fibers based primarily on beta-phase silicon carbide. It provides a discussion on factors that are considered in understanding thermostructural capability of ceramic fiber for high-temperature ceramic-matrix composites (CMC) applications. The article tabulates other commercial oxide and nonoxide fiber types for CMC reinforcement.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... Abstract This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
... been used as matrix materials for a wide range of metal matrix composite materials. A partial list of these materials includes: Reinforcement Matrix alloys Boron fiber Aluminum, titanium Silicon carbide fiber Aluminum, titanium, magnesium, copper Graphite Fiber Aluminum, magnesium...
Abstract
This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal of aluminum MMCs.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001457
EISBN: 978-1-62708-173-3
... of continuous fiber-reinforced composites include silicon carbide fiber-reinforced glass-ceramic composites ( Ref 15 ); glass or glass-ceramic matrices reinforced with silicon carbide, alumina, or other fibers ( Ref 16 ); and continuous and discontinuous fiber-reinforced oxide-matrix composites in which...
Abstract
This article is intended to assist the development of procedures for the brazing of ceramic-to-ceramic or ceramic-to-metal joints for service under elevated temperatures, mechanical or thermal stresses, or corrosive atmospheres. It describes the factors considered in preparing a procedure for the brazing of graphitic materials.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... consists of a conventional Ti-6Al-4V or Ti-6242 matrix with layers of continuous silicon-carbide fibers. The layers can be either unidirectional or cross-ply. Two manufacturing techniques can be used: a foil/fiber/foil approach, in which layers of monolithic foil and fiber sets are either vacuum hot...
Image
Published: 01 January 1989
Fig. 1 Cross sections of typical fiber-reinforced MMCs. (a) Continuous fiber reinforced graphite/aluminum composites. (b) Discontinuous silicon carbide/aluminum composite. (c) Continuous-fiber silicon carbide/aluminum composite
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... the fibers and fiber-matrix interfacial regions of the most successful CFCCs tend to be either carbides or nitrides, they can exhibit poor stability at elevated temperatures when exposed to oxygen-containing environments. The performance of CFCCs depends critically on the integrity of these regions, and thus...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... presents the possibility of continuous prefiring and controlled shrinkage sintering. Virtually any material capable of being formed into a fine, stable powder can be spun with this method. Nonoxide Fibers Silicon Carbide Fibers The development of SiC fiber during the last quarter of the 20th...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
..., the silicon-carbide fiber mat ( Fig. 10 ) is held together with a cross weave of molybdenum, titanium, or titanium-niobium wire or ribbon. The fabric is a uniweave system in which the relatively large-diameter SiC monofilaments are straight and parallel and held together by a cross weave of metallic ribbon...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
... are the continuous fiber CMCs discussed later in this article, there have been attempts to develop discontinuously reinforced CMCs for such applications. One example is the zirconium diboride (ZrB 2 ) platelet-reinforced zirconium carbide (ZrC) composite described subsequently. This is another example of CMC...
Abstract
The applications of discontinuously reinforced ceramic-matrix composites (CMCs) fall into four major categories, namely, cutting tool inserts; wear-resistant parts; aerospace and military applications; and other industrial applications, including engines and energy-related applications. This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002463
EISBN: 978-1-62708-194-8
... in this article). Ceramics and glasses are usually composed of oxides, carbides, borides, or nitrides and show a number of common features attributable to their covalent/ionic bonding. Some ceramics are relatively more covalent in nature; these include silicon nitride and silicon carbide used for various high...
Abstract
This article provides a discussion on various types of glasses: traditional glasses, specialty glasses, and glass ceramics. It provides information on glazes and enamels and reviews the broad classes of ceramic materials. These include whitewares, structural clay products, technical ceramics, refractories, structural ceramics, engineering ceramics, and electronic and magnetic ceramics. General processing variables that can affect structure and compositional homogeneity are discussed. Traditional ceramics that include both oxide and nonoxide ceramics are also reviewed. The article concludes with several examples of engineering ceramics.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... fiber PMCs have led to some very high production volumes. Metal-Matrix Composites At this time, the key electronic-packaging MMCs are: Silicon carbide particle-reinforced aluminum (Al/SiC, also known as discontinuously reinforced aluminum, or DRA) Beryllia particle-reinforced beryllium...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
... carbide with a fugitive binder. The fiber mats and silicon cloth are stacked in an alternate sequence, debinderized, and hot pressed in a molybdenum die and in a nitrogen or vacuum environment. The temperature and pressure are adjusted to produce a handleable preform. At this stage, the silicon matrix...
Abstract
Ceramic-matrix composites (CMCs) have ability to withstand high temperatures and have superior damage tolerance over monolithic ceramics. This article describes important processing techniques for CMCs: cold pressing, sintering, hot pressing, reaction-bonding, directed oxidation, in situ chemical reaction techniques, sol-gel techniques, pyrolysis, polymer infiltration, self-propagating high-temperature synthesis, and electrophoretic deposition. The advantages and disadvantages of each technique are highlighted to provide a comprehensive understanding of the achievements and challenges that remain in this area.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002478
EISBN: 978-1-62708-194-8
... Abstract This article begins with a discussion on fiber-reinforced composite materials and describes the generic behavior and structure/property relationships of composites. The article summarizes lamina properties and presents equations that help in the calculation of lamina properties...
Abstract
This article begins with a discussion on fiber-reinforced composite materials and describes the generic behavior and structure/property relationships of composites. The article summarizes lamina properties and presents equations that help in the calculation of lamina properties. Composite laminates are constructed from lamina with uniaxial fiber orientation and frequently from textile fabrics as well. The article explains the characteristics of symmetric in-plane and through-thickness laminates; asymmetric in-plane and symmetric through-thickness laminates; asymmetric laminates; and curved laminates. It provides information on controlled thermal expansion composites, metal-matrix composites, and ceramic-matrix composites. The article illustrates the types of bonded joints and concludes with a discussion on design for manufacturing.
1