Skip Nav Destination
Close Modal
Search Results for
shock-resisting tool steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 484 Search Results for
shock-resisting tool steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005972
EISBN: 978-1-62708-168-9
... discussed include water-hardening tool steels, shock-resisting tool steels, oil hardening cold-work tool steels, low-alloy special-purpose tool steels, and carbon-tungsten special-purpose tool steels. carbon-tungsten special-purpose tool steel cold work tool steel heat treatment oil hardening cold...
Abstract
This article provides a detailed discussion on various recommended heat treating practices, including normalizing, annealing, austenitizing, quenching, tempering, stress relieving, preheating, and martempering, for various low- and un-alloyed cold-work hardening tool steels. The steels discussed include water-hardening tool steels, shock-resisting tool steels, oil hardening cold-work tool steels, low-alloy special-purpose tool steels, and carbon-tungsten special-purpose tool steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
..., austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool...
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
... Abstract Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot...
Abstract
Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool steels: carburizing, nitriding, ion or plasma nitriding, oxidation, boriding, plating, chemical vapor deposition, and physical vapor deposition. The article describes the properties of high-speed tool steels. It summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. The article concludes by providing information on abrasive wear and grindability of powder metallurgy steels.
Image
Published: 01 December 1998
Fig. 2 Effect of tempering temperature on hardness of type S1 shock-resisting tool steels Steel Composition, % Quenching Temperature Medium No. Type C Si W Cr V °C °F 1 S1 0.43 … 2.00 1.30 0.25 955 1750 … 2 S1 0.53 … 2.00 1.65 0.25 900 1650
More
Image
in Heat Treating of Cold-Work Tool Steels—Low- and Un-Alloyed Water and Oil Hardening Steels
> Heat Treating of Irons and Steels
Published: 01 October 2014
Fig. 6 Effect of tempering temperature on surface hardness of shock-resisting tool steels Steel Composition, % Quenching Medium Temperature No. Type C Si W or Mo Cr V °C °F 1 S1 0.43 … 2.00 W 1.30 0.25 955 1750 … 2 S1 0.53 … 2.00 W 1.65 0.25 900
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006064
EISBN: 978-1-62708-175-7
... as K Ic k/E α, where K Ic is fracture toughness. In general, the higher the value, the better the thermal shock resistance. Applications and Grade Selection Applications for cemented carbide have expanded since its invention in the early 1920s, such that cemented carbide the dominant tool...
Abstract
Cemented carbide is, in its simplest form, a metal-matrix composite of tungsten carbide particles in a cobalt matrix. This article describes the microstructure, physical, and mechanical properties of cemented carbides. The properties discussed include thermal conductivity, magnetic properties, corrosion resistance, hardness, fracture toughness, wear resistance, and thermal shock resistance. The article concludes with information on the applications, grade classification, and selection of grades.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005104
EISBN: 978-1-62708-186-3
... hardness, or change to a less wear-resistant blade material or to a shock-resistant tool steel having a hard case over a tough core, to obtain the toughness needed to resist edge chipping. For example, D2 tool steel is recommended for shearing any metal substantially less than 6 mm ( 1 4...
Abstract
Shearing is a process of cutting flat product with blades, rotary cutters, or with the aid of a blanking or punching die. This article commences with a description of some wear and material factors for tools used to shear flat product, principally sheet. Methods of wear control are reviewed in terms of tool materials, coatings and surface treatments, and lubrication. The article discusses tool steels that are used for cold and hot shearing, and rotary slitting. It provides information on the materials used for two main categories of machine knives: circular knives and straight knife cutters. The article also discusses the selection of materials for blanking and piercing dies and provides examples that illustrate the various types of tooling changes for blanking high-carbon steel.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... of die materials in forging Table 3 Typical service temperature of die materials in forging Tool material Recommended service temperature range °C °F Low-alloy steels, air-hardening steels, shock-resisting steels 205–480 400–900 Chromium, tungsten, and molybdenum hot work steels...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002126
EISBN: 978-1-62708-188-7
...×. Courtesy of Kennametal Inc. Fig. 2 Micrograph of a hot-pressed Al 2 O 3 -TiC ceramic tool material. 1500×. Courtesy of Kennametal Inc. Alumina-Zirconia Alumina-zirconia (Al 2 O 3 -ZrO 2 ) is an alloyed ceramic with higher fracture toughness and thermal shock resistance than monolithic...
Abstract
Ceramics are materials with the potential for a wide range of high-speed finishing operations and for high removal rate machining of difficult-to-machine materials. This article describes the production process, composition, properties, and applications of ceramic tool materials. It presents a comprehensive discussion on the properties and composition of alumina-base tool materials, including alumina and titanium carbide, alumina-zirconia, and silicon carbide whisker reinforced alumina, and silicon nitride base tool materials.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
... H13 ( Ref 2 ). Type H14 Tool Steel H14 contains 5% chromium and 5% tungsten, and is also available with small additions of vanadium (0.25%), molybdenum (0.25%), and cobalt (0.50%). It has greater hot hardness and wear resistance than H11, 12, or 13, but is not as shock resistant. Similar...
Abstract
This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools using examples. The article provides information on the North American Die-Casting Association's requirements for steel grades and heat treatment of dies made of hot-work tool steels. It also describes the chemical compositions and mechanical and metallurgical properties of hot-work tool steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001041
EISBN: 978-1-62708-161-0
... steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and special-purpose steels. Hot-work steels are designed to withstand excessive amounts of heat, pressure, and abrasion, suiting them for punching, shearing, and high-temperature forming applications. Cold-work tool...
Abstract
Tool steels are any steel used to make tools for cutting, forming, or shaping manufactured parts. Most tool steels are wrought products alloyed with relatively large amounts of tungsten, molybdenum, vanadium, manganese, and/or chromium. The article describes a wide variety of tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and special-purpose steels. Hot-work steels are designed to withstand excessive amounts of heat, pressure, and abrasion, suiting them for punching, shearing, and high-temperature forming applications. Cold-work tool steels have exceptional dimensional stability and wear resistance, but lack the alloy content necessary to resist softening at temperatures above 205 to 260 deg C. The article examines standard designations for all tool steel types and provides corresponding composition and property ranges. It also discusses surface treatments, fabrication issues, and in-service measures of performance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... of these additives impart different combinations of wear resistance, thermal shock resistance, and toughness, and they allow tools to be tailored for a wide range of machining applications. The newer cermets are used in semifinishing and finishing of carbon and alloy steels, stainless steels, ductile irons, free...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002124
EISBN: 978-1-62708-188-7
...-cobalt alloys containing TiC, TaC, and NbC are called complex grades, multigrades, or steel-cutting grades. Adding TaC to WC-TiC-Co alloys partially overcomes the deleterious effect of TiC on the strength of WC-Co alloys. Tantalum carbide also resists cratering and improves thermal shock resistance...
Abstract
This article discusses the manufacturing steps and compositions of cemented carbides, as well as their microstructure, classifications, applications, and physical and mechanical properties. It provides information on new tool geometries, tailored substrates, and the application of thin and hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. The article also discusses tool wear mechanisms and the methods available for holding the carbide tool.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
... resistance, whereas higher feed rates require tools with increased toughness. High-speed tool steels are the toughest materials; however, their relatively low wear resistance limits their application to lower-speed machining operations. At the other end of the spectrum, ultrahard materials such as CBN...
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
... hardening and contain chromium and nickel as primary elements Water-hardening tool steels W Shallow hardening steels with carbon as the principal alloying element Shock-resisting tool steels S Used in applications requiring high toughness and resistance to shock loading. Variation in hardenability...
Abstract
This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers the mechanism, advantages, and applications of each of these techniques.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... Abstract This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002123
EISBN: 978-1-62708-188-7
... Abstract Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds...
Abstract
Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds than high-speed steel tools. This article provides an overview of the processing, properties, and applications of these alloys.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... operations, dies made from tool steels other than those discussed previously may be desirable. For example, shock-resistant tool steels such as S1, S5, and S7 may be used for die components subjected to severe impact in service. H11 and H13, possibly nitrided for greater wear resistance, also may be used...
Abstract
This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc-aluminum, and steel-bonded carbides. The article describes factors to be considered during the selection of materials for press-forming dies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
.... Selection always involves some compromise—the most important is wear resistance versus toughness. It is impossible to get a material which has maximum wear resistance and toughness at the same time. And unless a tool steel has adequate toughness, it will exhibit brittle failure in service. Therefore...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
1