Skip Nav Destination
Close Modal
Search Results for
shock loading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 153 Search Results for
shock loading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
..., austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool...
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses the key issues related to simulation of the in vivo environment, service conditions, and data interpretation. Theses include frequency of dynamic loading, electrolyte chemistry, applicable...
Abstract
This article describes some of the mechanical/ electrochemical phenomena related to the in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses the key issues related to simulation of the in vivo environment, service conditions, and data interpretation. Theses include frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article describes the fundamentals of CF and SCC, testing methodology, and test findings from laboratory, in vivo, and retrieval studies.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... heat treated to relatively low hardnesses. Because of these low hardnesses, their wear resistance is only moderate. However, they are known to possess good resistance to shock loading (such as encountered in hammer forging), heat checking, and catastrophic failure. Table 2 Nominal compositions...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... metal-to-metal contact ( Ref 1 ). The factors preventing adhesive wear can be summarized and categorized into groups ( Ref 3 , 6 , 62 , 70 , 73 ): Controlling contact severity by avoiding shocks and elevated levels and by keeping load, speed, and temperature as low as possible...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... window sills and fireplace surrounds. Stove tiles (majolica, earthenware) are large and thick decorative tiles of considerable porosity that possess good thermal shock resistance and are thermally efficient (in terms of both thermal insulation and heat storage). Although made of inexpensive raw...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003992
EISBN: 978-1-62708-185-6
... furnaces. Source: Ref 5 The preheating of forging stock is dictated by the grade, size, and condition of the stock to be forged. Austenitic and ferritic grades, for example, are generally considered safe from thermal shock and can be charged directly into hot furnaces. Certain martensitic grades...
Abstract
Stainless steels, based on forging pressure and load requirements, are more difficult to forge because of the greater strength at elevated temperatures and the limitations on the maximum temperatures at which stainless steels can be forged without incurring microstructural damage. This article discusses the forging methods, primary mill practices (primary forging and ingot breakdown), trimming, and cleaning operations of stainless steels. It describes the use of forging equipment, dies, and die material in the forging operation. The article provides an overview of the forgeability of austenitic stainless steels, martensitic stainless steels, precipitation-hardening stainless steels, and ferritic stainless steels. It concludes with a discussion on the heating and lubrication of dies.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... stress above the design value or when the material strength is degraded. If either situation is a characteristic of the fabricated structure, the design must be changed to allow for these factors more realistically. When rapid or impulse loads are applied, as in impact, shock loading, or high...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003167
EISBN: 978-1-62708-199-3
... bearing materials are widely used for a variety of applications. They have many inherent advantages over metals, including better corrosion resistance, lighter weight, better resistance to mechanical shock, and the ability to function with very marginal lubrication or with no lubricant present at all. The...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article explains the role of wear damage mechanisms in the design and selection of bearing materials, and its relationship with bearing material properties. Sliding bearings are commonly classified by terms that describe their application; they also are classified according to material construction, as single-metal, bimetal, or trimetal sliding bearings. The article further provides detailed tabular data on the designation and composition of the following types of bearing materials: tin-base alloys, lead-base alloys, copper-base alloys, and aluminum-base alloys. It also briefly discusses the following types of bearing materials: zinc-base alloys, silver-base alloys, gray cast irons, cemented carbides, and nonmetallic bearing materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003101
EISBN: 978-1-62708-199-3
... HP-9-4-30 steel is available as billet, bar, rod, plate, sheet, and strip. It has been used for aircraft structural components, pressure vessels, rotor shafts for metal forming equipment, drop hammer rods, and high-strength shock-absorbing automotive parts. The steel AF1410 was an outgrowth of...
Abstract
Ultrahigh-strength steels are designed to be used in structural applications where very high loads are applied and often high strength-to-weight ratios are required. This article discusses the composition, mechanical properties, processing, product forms, and applications of commercial structural steels capable of a minimum yield strength of 1380 MPa (200 ksi). These include medium-carbon low-alloy steels, such as 4340, 300M, D-6a and D-6ac steels; medium-alloy air-hardening steels, such as HI1 modified steel and H13 steel; high fracture toughness steels, such as HP-9-4-30, AF1410, and AerMet 100 steels; and maraging steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... components. Earlier it was discussed how temperature changes could introduce steady-state thermal-expansion stresses. In some cases, stresses generated during temperature transients are more severe than in steady-state conditions, and some materials can easily fracture from thermal shock if the temperature...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... shock) issue. Therefore, the manual die cooling line control must be very carefully and routinely checked. In semiautomatic control mode, the cooling operation is based on a preset programmable logic controller device to control the cooling water on/off and some other operations, such as air purge...
Abstract
High-pressure die casting is a fast method for net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. The steps include liquid metal pouring, injection, solidification, die open, part extraction, die lubrication, insert loading, and die close. Some manual aspects of the operations together with automation options are discussed. The article describes finishing steps, such as finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation of the postcasting process is also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... superior. Proportional inlet and vent valves allow autoclave pressures to be controlled and varied precisely. It is important that this very hot gas being introduced into the pressure vessel not impinge on the part load, as the gas stream could cause part damage due to thermal or mechanical shock. The...
Abstract
Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and functions of an autoclave system, including pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, vacuum systems, control systems, and loading systems. The article includes information about modified autoclaves for specialized applications and safety practices in autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... there is a specific justification for another material to be used (e.g., high speed, high temperature, corrosion, severe shock loads). An overview of the qualitative benefits of different bearing materials is provided in Table 2 . A number of alternative casting techniques and heat treatments have been...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... section summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. Among the important attributes are hardenability; machinability; and resistance to wear, plastic deformation, shock loading, and heat checking. The...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003987
EISBN: 978-1-62708-185-6
... coining operation and that they ensure minimum movement of the die parts. For light-load applications with minimal shock or impact loading, cemented tungsten carbide containing at least 13% Co is used. For applications involving greater shock loading, higher cobalt contents (up to 25%) are required...
Abstract
Coining is a closed-die forging operation in which all surfaces of the workpiece are confined or restrained, resulting in a well-defined imprint of the die on the workpiece. This article focuses on the coining equipment (hammers and presses), lubricants, and general and special die materials used in the coining process. It discusses the coinability of metals such as steels, copper, and composite metals. The article describes the control of dimensions, surface finishes, and weight of coined items. It concludes with a discussion on processing problems and solutions.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003847
EISBN: 978-1-62708-183-2
..., rubber linings offer good resistance to thermal or mechanical shock and can be formulated for excellent abrasion resistance. The installation process is very labor-intensive. The sheets are cut and applied by hand to the substrate, and the air is eliminated between the two surfaces with rollers and...
Abstract
Natural and synthetic rubber linings are used extensively in many industries for their corrosion and/or abrasion resistance. These industries include transportation, chemical processing, water treatment, power, mineral processing, and mining. This article provides information on soft natural rubber, semihard natural rubber, hard natural rubber, neoprene or polychloroprene, chlorobutyl, three-ply linings, nitrile, and ethylene propylene with a diene monomer. Emphasis is placed on advantages, disadvantages, and common uses of each material discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... of load application, duration of contact period, and impact. To limit the shock that can occur when the operator removes the load (this generally has an adverse effect on indentations made with loads below 500 g), an automatic test cycle is built into the Tukon microhardness tester. With this...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003012
EISBN: 978-1-62708-200-6
... material with a high-density skin. The overall weight reduction is desirable in many applications, and foamed material has improved heat, sound, and dielectric insulating properties. It can withstand large impact and shock loads, so it is often used in packaging. Materials savings is an additional benefit...
Abstract
Additives for plastics and elastomers are used to increase the ease of processing and to improve the properties of the final product. Additives improve processing characteristics by increasing lubricity and by stabilizing the polymer. Additives that improve properties include those that decrease static charge development and microbial activity and those that improve flame retardation characteristics, color, light stability, impact resistance, density and mechanical properties. This article focuses on the additives for polymers and elastomers that are used for improving processing--blowing agents, mold-release agents, lubricants, plasticizers, and heat stabilizers--and for improving properties antimicrobials, antioxidants, antistatic agents, colorants, fillers and fiber reinforcements, flame retardants, impact modifiers, light stabilizers, plasticizers, and heat stabilizers. Furthermore, it discusses the method for addition of these additives and the problems faced during compounding.