1-20 of 381 Search Results for

shielding molten

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
...-shielded flux cored arc welding shielding gas THE SHIELDING GAS used in a welding process has a significant influence on the overall performance of the welding system. Its primary function is to protect the molten metal from atmospheric nitrogen and oxygen as the weld pool is being formed...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... tension thermal conductivity THE SHIELDING GAS used in a welding process has a significant influence on the overall performance of the welding system. Its primary function is to protect the molten metal from atmospheric nitrogen and oxygen as the weld pool is being formed. The shielding gas also...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
... Abstract Corrosion resistance can usually be maintained in the welded condition by balancing alloy compositions, shielding molten and hot metal surfaces, and choosing the proper welding parameters. This article describes some of the metallurgical factors that affect corrosion of weldments...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001353
EISBN: 978-1-62708-173-3
... Abstract Shielded metal arc welding (SMAW), commonly called stick or covered electrode welding, is a manual welding process whereby an arc is generated between a flux-covered consumable electrode and a workpiece. This article discusses the advantages and limitations and applications of the SMAW...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005570
EISBN: 978-1-62708-174-0
... to generate a shielding gas and to provide fluxing elements to protect the molten weld-metal droplets and the weld pool. This welding process has its origins in the 1800s, but it was not until the early 1900s that coverings for these electrodes began to be developed. In the 1930s, this method of welding began...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... efficiency to base metal versus electrode-speed for 0.89 mm (0.035 in.) diameter steel electrode in an Ar-2% O 2 shield gas. Total heat-transfer efficiency is shown partitioned into arc and molten drop components. Power supply open-circuit voltage, E 0 , is 32 V; contact tube-to-base metal distance, C T...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... steels titanium alloys SHIELDED METAL ARC WELDING (SMAW) is a manual arc welding process in which the heat for welding is generated by an arc established between a flux-covered consumable electrode and a workpiece. The electrode tip, molten weld pool, arc, and adjacent areas of the workpiece...
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
.... It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting. air carbon arc cutting arc cutting electric arc cutting ferrous metals gas metal arc cutting gas tungsten arc cutting gouging...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... current GAS-METAL ARC WELDING (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and the workpiece. An externally supplied gas or gas mixture acts to shield the arc and molten weld pool. Although...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003622
EISBN: 978-1-62708-182-5
... of the solidifying weld pool Corrosion resistance can usually be maintained in the welded condition by: Balancing alloy compositions to inhibit certain precipitation reactions Shielding molten and hot metal surfaces from reactive gases in the weld environment Removing chromium-enriched oxides...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... different power densities, depending on materials and somewhat on shield gas type. To protect the molten metal from the atmosphere, a shielding gas is necessary, akin to the GMAW process, which is also referred to metal inert gas (MIG) welding. Common shielding gases for near-infrared laser welding...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... shielding gas is directed through the gas nozzle to protect the molten weld pool and arc from atmospheric contamination and to influence the arc and weld pool characteristics. The important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... on other factors, such as compositionally dependent molten metal properties. Shielding gas is used to displace reactive gases in the atmosphere from the vicinity of the weld. Inert gases are preferred for the GTAW process, because they minimize unwanted gas-metal reactions with the workpieces. A uniform...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... source. Faster response of inverter-controlled arc welding machine (2 ms to go from 0 to 100 A) indicates a more stable arc. The welding torch holds the tungsten electrode that conducts the current to the arc, and it provides a means of shielding the arc and molten metal. The major components...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... the factors that affect the weldability of copper alloys, including thermal conductivity of the alloy being welded, shielding gas, type of current used during welding, joint design, welding position, and surface condition. The article provides information on arc welding processes such as gas-metal arc welding...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... materials. The welding torch holds the tungsten electrode that conducts the current to the arc, and it provides a means of shielding the arc and molten metal. The major components of a typical welding torch are shown in Fig. 16 . Welding torches rated at less than 200 A are normally gas cooled...
Book Chapter

By Daryl D. Peter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
.... Ventilation is critical, and protection of all metal exposed to the fumes is mandatory. Scrubbers are often required for the air removed from above the liquid. Safety equipment, such as full-face protection, heat suits, heat shields, and gloves, should be required when working around molten flux or metal...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
... equilibrium. Despite shielding, some nitrogen may still be present in the arc. Thus, similar considerations presented previously for oxygen should be given to nitrogen as well. Estimates of the time for which the molten slag and molten metal are in contact range from 3 to 8 s. During the process, the gaseous...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
... supplied gas. This process can produce high deposition rates, high heat input, and deep-penetration welds by varying the arc voltage, gas shielding, and wire-feed speeds of the electrode. These electrodes will function in all positions if used at the proper settings. The transfer of the molten metal...