Skip Nav Destination
Close Modal
Search Results for
shielding gases
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 426 Search Results for
shielding gases
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
... Abstract The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005642
EISBN: 978-1-62708-174-0
... Abstract This article contains a table that lists the properties of various fuel gases, namely, acetylene, hydrogen, methane, methyl acetylene propadiene, propane, propylene, and natural gas. It discusses shielding gases, their mixtures and uses in gas metal arc welding, flux cored arc welding...
Abstract
This article contains a table that lists the properties of various fuel gases, namely, acetylene, hydrogen, methane, methyl acetylene propadiene, propane, propylene, and natural gas. It discusses shielding gases, their mixtures and uses in gas metal arc welding, flux cored arc welding, gas tungsten arc welding, and plasma arc welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... gas will aid in the selection of the right shielding gas or gases for a welding application. Use of the best gas blend will improve the quality and may reduce the overall cost of the welding operation as well. Basic Properties of a Shielding Gas The “controlled electrical discharge” known...
Abstract
The shielding gas used in a welding process has a significant influence on the overall performance of the welding system. This article discusses the basic properties of a shielding gas in terms of ionization potential, thermal conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well as the influence of shielding gas on weld mechanical properties. It concludes with a discussion on flux-cored arc welding.
Image
Published: 31 October 2011
Fig. 8 Plot of arc voltage versus arc current for selected inert shielding gases. Welding parameters: anode, titanium; cathode, tungsten; polarity, direct current electrode negative; arc length, 12.7 mm (0.050 in.)
More
Image
in Procedure Development and Practice Considerations for Electron-Beam Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 26 Plot of penetration versus welding speed as a function of shielding gases and working distances for nonvacuum EBW of 4340 medium-carbon ultrahigh-strength steel. Beam power was 6.4 kW.
More
Image
Published: 01 January 1993
Fig. 8 Plot of arc voltage versus arc current for selected inert shielding gases. Welding parameters: anode, titanium; cathode, tungsten; polarity, DCEN; arc length, 12.7 mm (0.050 in.)
More
Image
in Procedure Development and Practice Considerations for Laser-Beam Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 7 Comparison of laser weld penetration achieved with different shielding gases. Source: Ref 9
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures, current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... information on process capabilities, principles of operation, power sources, electrodes, shielding gases, flux, process variables, and advantages and disadvantages of these arc welding methods. It presents information about the arc welding procedures of hardenable carbon and alloy steels, cast irons...
Abstract
Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides information on process capabilities, principles of operation, power sources, electrodes, shielding gases, flux, process variables, and advantages and disadvantages of these arc welding methods. It presents information about the arc welding procedures of hardenable carbon and alloy steels, cast irons, stainless steels, heat-resistant alloys, aluminum alloys, copper and copper alloys, magnesium alloys, nickel alloys, and titanium and titanium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications of the PAW process and discusses the typical components and joints used. It concludes with information on personnel requirements and safety issues.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
..., and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001439
EISBN: 978-1-62708-173-3
... Abstract Most magnesium alloys can be joined by gas-tungsten arc welding (GTAW) and gas-metal arc welding (GMAW). This article describes relative weldability ratings and provides information on joint design and surface preparation and the use of filler metals and shielding gases suitable to arc...
Abstract
Most magnesium alloys can be joined by gas-tungsten arc welding (GTAW) and gas-metal arc welding (GMAW). This article describes relative weldability ratings and provides information on joint design and surface preparation and the use of filler metals and shielding gases suitable to arc welding of magnesium alloys. The article describes the repair welding of castings, with examples. It concludes with a discussion on heat treatment of castings after welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001440
EISBN: 978-1-62708-173-3
... the role of filler metals and shielding gases in welding titanium and titanium alloys. It describes the equipment used for gas-tungsten arc welding and concludes with information on repair welds. alpha titanium alloys aluminum austenitic stainless steel electron-beam welding friction welding...
Abstract
Commercially pure titanium and most titanium alloys can be welded by procedures and equipment used in welding austenitic stainless steel and aluminum. This article describes weldability of unalloyed titanium and all alpha titanium alloys. It reviews the selection of fusion-welding processes that are used for joining titanium and titanium alloys. The processes include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), and resistance welding (RW). The article discusses the role of filler metals and shielding gases in welding titanium and titanium alloys. It describes the equipment used for gas-tungsten arc welding and concludes with information on repair welds.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
...), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), resistance welding (RW), resistance spot welding (RSW), and resistance seam welding (RSEW). The article reviews the selection of shielding gases and filler metals for welding zirconium alloys...
Abstract
Zirconium and its alloys are available in two general categories: commercial grade and reactor grade. This article discusses the welding processes that can be used for welding any of the zirconium alloys. These include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), resistance welding (RW), resistance spot welding (RSW), and resistance seam welding (RSEW). The article reviews the selection of shielding gases and filler metals for welding zirconium alloys. It concludes with a discussion on process procedures for welding zirconium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001433
EISBN: 978-1-62708-173-3
... Abstract This article discusses factors involved in selecting welding processes and consumables and establishing procedures and practices for the arc welding of low-alloy steels. It provides information on welding consumables in terms of filler metals and fluxes and shielding gases. The article...
Abstract
This article discusses factors involved in selecting welding processes and consumables and establishing procedures and practices for the arc welding of low-alloy steels. It provides information on welding consumables in terms of filler metals and fluxes and shielding gases. The article describes the various categories of low-alloy steels, such as high-strength low-alloy (HSLA) structural steels, high-strength low-alloy quenched and tempered(HSLA Q&T) structural steels, low-alloy steels for pressure vessels and piping, medium-carbon heat-treatable (quenched and tempered) low-alloy (HTLA) steels, ultrahigh-strength low-alloy steels, and low-alloy tool and die steels. It concludes with a discussion on repair practices for tools and dies.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
.... It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Image
Published: 31 October 2011
Fig. 14 Comparison of CO 2 laser weld penetration achieved with different shielding gases. Source: Ref 38
More
Image
Published: 31 October 2011
Fig. 3 Plot of fume formation rate versus current for mild steel solid wire using selected shielding gases. Source: Ref 10
More
Image
Published: 01 January 1993
Fig. 3 Plot of fume formation rate versus current for mild steel solid wire using selected shielding gases. Source: Ref 13
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
...-alloy steel, stainless steel, aluminum, copper, and nickel alloys can be welded in all positions by this process if appropriate shielding gases, electrodes, and welding parameters are chosen. Advantages The applications of the process are dictated by its advantages, the most important of which...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
1