1-20 of 453 Search Results for

shielding gas supply

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... current GAS-METAL ARC WELDING (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and the workpiece. An externally supplied gas or gas mixture acts to shield the arc and molten weld pool...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
..., wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... process: electrical shock, fumes and gases, arc radiation, and fire and explosion. arc radiation automatic welding electrical shock filler metals fire and explosion fumes gas tungsten arc welding power supplies robotic welding safety precautions shielding gas torch construction tungsten...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
...-cored arc welding has two major variations. The gas-shielded FCAW process ( Fig. 1 ) uses an externally supplied gas to assist in shielding the arc from nitrogen and oxygen in the atmosphere. Generally, the core ingredients in gas-shielded electrodes are slag formers, deoxidizers, arc stabilizers...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... formulations using gas blends of 85 to 90% Ar/balance CO 2 were designed and used in common applications. Process Features Flux cored welding electrodes are supplied in two distinct product types: Gas-shielded flux cored arc welding (FCAW-G) process Self-shielded flux cored arc welding (FCAW-S...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... with shielding from an externally supplied gas and without the application of pressure. The GMAW process is the major high-speed production process for arc welding aluminum. It uses positive electrode dc power, which gives it a continuous cleaning action and concentrates the arc to produce rapid melting...
Image
Published: 01 January 1993
) … … Joint type Fillet/butt Butt Saddle Fillet Fillet/butt (a) 4043 aluminum filler metal; ac/dc square wave power supply; 2% ceriated electrode material; 50% He-50% Ar shielding gas; ac process (b) No filler metal used; dc precision power supply; 2% thoriated electrode material; argon More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... shielding of the filler metal by the gas stream is not maintained Low tolerance for contaminants on filler or base metals Contamination or porosity, caused by coolant leakage from water-cooled torches Arc blow or arc deflection, as with other processes Power Supplies Power supplies...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
... (dc) power supply. In the torch, a portion of the inert gas is changed into a plasma (ionized gas) by heat created by the discharge of a high-voltage arc from the power supply. This arc is created between an electrode (dc negative) in the torch and the tip (nozzle) of the torch through which the gas...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
... by supplying an initial voltage high enough to cause a discharge or by touching the electrode to the work and then withdrawing it as the contact area becomes heated. High-frequency spark discharges are frequently used for igniting gas-shielded arcs, but the most common method of striking an arc is the touch...
Image
Published: 01 December 2008
as an insulating layer between the furnace and the pressure vessel. The mantle and an external cooling water circuit act to keep the temperature of the pressure vessel low during a HIP cycle, thus maximizing the vessel strength. A vacuum system (not shown) and an inert gas supply and gas compressors are used More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001440
EISBN: 978-1-62708-173-3
.... Because of its high purity (99.985% min.) and low moisture content, a liquid argon supply is often preferred. The argon gas should have a dew point of −60 °C (−75 °F) or lower. The hose used for the shielding gas should be clean, nonporous, and flexible, and may be made of Tygon or vinyl plastic. Because...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
... gases must envelope the weldment during welding and cooling. Complex assemblies that are difficult to shield in air can be welded in a chamber. The chamber can be capable of either being evacuated and back filled with argon or helium or it can be supply purged with shielding gas before and during...
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
.... This is partly due to the output waveform of the dc power supply (the smoother the output, the smoother the cut), but it is also determined to an extent by the gases used and the torch design. Water-shielded and water-injection plasma arc cutting provide much smoother cuts than do gas-shielded or conventional...
Image
Published: 31 October 2011
Fig. 3 Plot of heat-transfer efficiency to base metal versus electrode speed for 0.89 mm (0.035 in.) diameter steel electrode in an Ar-2% O 2 shield gas. Total heat-transfer efficiency is shown partitioned into arc and molten drop components. Power supply open-circuit voltage, E O , is 32 V More
Image
Published: 01 January 1993
Fig. 2 Plot of heat-transfer efficiency to base metal versus electrode-speed for 0.89 mm (0.035 in.) diameter steel electrode in an Ar-2% O 2 shield gas. Total heat-transfer efficiency is shown partitioned into arc and molten drop components. Power supply open-circuit voltage, E 0 , is 32 V More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... be required. Process Features Flux-cored arc welding has two major variations. The gas-shielded FCAW process ( Fig. 3 ) uses an externally supplied gas to assist in shielding the arc from nitrogen and oxygen in the atmosphere. Generally, the core ingredients in gas-shielded electrodes are slag formers...